首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hazardous metal cations enter water through the natural geochemical route or from the industrial wastes. Their separation and removal can be achieved by adsorptive accumulation of the cations on a suitable adsorbent. In the present work, toxic Pb(II) ions are removed from water by accumulating it on the surface of natural zeolite in three different forms; one untreated and two treated samples, one sample treated with 2 M HCI solution and other is treated with 3 M NaOH solution. Natural zeolite is mainly composed of clinoptilolite, and mordenite, with amount of non-zeolite phase (smectite and illite) and C and CT opal. The adsorption experiments are carried out using a batch process in environments of different pH, initial Pb(II) concentration, interaction time and amount of zeolites. Treated zeolite samples show high exchange capacity for Pb(II) compared to untreated sample, however, acid-treated sample shows an exceedingly good exchange capacity. Equilibrium data fitted well with the Langmuir isotherm model with maximum adsorption capacity of 115, 126, and 132 mg g−1 of untreated natural zeolites, alkali-treated zeolites and acid-treated zeolites respectively. The rates of adsorption were found to confirm to pseudo-first order kinetic with good correlation and the overall rate of lead ions uptake.  相似文献   

2.
As, Hg and Pb are examples of heavy metals which are present in different types of industrial effluents responsible for environmental pollution. Their removal is traditionally made by chemical precipitation, ion-exchange and so on. However, this is expensive and not completely feasible to reduce their concentrations to the levels as low as required by the environmental legislation. Biosorption is a process in which solids of natural origin are employed for binding the heavy metal. It is a promising alternative method to treat industrial effluents, mainly because of its low cost and high metal binding capacity. The kinetics was studied for biosorption experiments using coconut fiber for As (III), Hg (II) and Pb (II) ions adsorption. The specific surface area and surface charge density of the coconut fiber are 1.186×1025 (m2/g) and 5.39 ×1024 (meq/m2), respectively. The maximum adsorption capacity was found to be the highest for Pb (II) followed by Hg (II) and As (III). The modification of the adsorbent by thiolation affected the adsorption capacity. Equilibrium sorption was reached for the metal ions at about 60 min. The equilibrium constant and free energy of the adsorption at 30 °C were calculated. The mechanism of sorption was found to obey the particle-diffusion model. The kinetic studies showed that the sorption rates could be described by both pseudo first-order and pseudo second-order models. The pseudo second-order model showed a better fit with a rate constant value of 1.16 × 10?4/min. for all three metal ions. Therefore, the results of this study show that coconut fiber, both modified and unmodified, is an efficient adsorbent for the removal of toxic and valuable metals from industrial effluents.  相似文献   

3.
矿物材料与环境污染治理—以粘土矿物和沸石为例   总被引:9,自引:0,他引:9  
矿物的性能,矿区地质测试和吸附能力实验表明,粘土矿物和沸石等矿物材料对于Cr,Cd,Pb,Hg,As等有害元素具有很强的吸附能力,是理想的低成本吸附剂,在废水处理中可用来取代活性炭或离子交换树脂来去除重金属等有害元素。  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(19-20):2929-2938
The competitive sorption of Cu(II) and Pb(II) to colloidal hematite was investigated as a function of pH and total metal concentration. Acid–base titrations of the hematite and single-metal sorption experiments for Cu and Pb at low to medium surface coverages were used to calibrate two surface complexation models, the triple layer model, and a 2-pK basic Stern model with ion-pair formation. The surface site density was systematically varied from 2 to 20 sites/nm2. Three different metal surface complexes were considered: (1) an inner-sphere metal complex; (2) an outer-sphere metal complex; and (3) an outer-sphere complex of singly hydrolyzed metal cations. Both models provided excellent fits to acid–base titration and single-metal sorption data, regardless of the surface site density used. With increasing site density, ΔpK of the stability constants for protonation reactions increased and metal surface complexes decreased steadily. The calibrated models based on different site densities were used to predict competitive sorption effects between Cu and Pb and single-metal sorption at higher total metal concentrations. Precipitation of oversaturated solid phases was included in the calculations. Best predictions of competitive sorption effects were obtained with surface site densities between 5 and 10 sites/nm2. The results demonstrate that surface site density is a key parameter if surface complexation models are exposed to more complex, multicomponent environments. We conclude that competitive metal sorption experiments can be used to obtain additional information about the relevant surface site density of oxide mineral surfaces.  相似文献   

5.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

6.
The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X and Y), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions.Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.  相似文献   

7.
Recent studies suggest that siderophores form stable complexes with divalent metals and affect their mobility. In this work, effects of trihydroxamate microbial siderophores and desferrioxamine-B (DFOB) on Pb(II), Zn(II), and Cd(II) sorption by two kinds of synthesized zeolites (13X and Na?CY) as a function of pH were investigated. Results showed that 13X zeolite has a higher sorption affinity for studied metals than Na?CY. DFOB strongly affected metal sorption on both zeolites. Under slightly acidic to neutral condition, DFOB increased the metal sorption on zeolites due to the sorption of positively charged heavy metal?CDFOB complexes. Whereas by increasing pH (>7), the mobilizing effect of DFOB was observed for Pb, Zn, and Cd. DFOB drastically decreased (80?%) Zn sorption in alkaline condition. As a result, siderophores can weaken the treatment efficiency of zeolites and increase the bioavailability of metals in soils. Surface complexation modeling revealed that the effects of DFOB on metal sorption by 13X and Na?CY zeolites can be explained by the differences in their surface charge. In general, the result shows the influence of DFOB on metal sorption by zeolites over the pH range 4?C9 and decreasing in the sequence Zn?>?Pb?>?Cd.  相似文献   

8.
粉煤灰、粘土、膨润土等对Zn2+的吸附试验研究   总被引:5,自引:0,他引:5  
席永慧  赵红  胡中雄 《岩土力学》2005,26(8):1269-1272
研究了粉煤灰、粘土、膨润土等从溶液中去除有毒金属离子Zn2+的吸附过程。动态试验显示吸附过程是快速的。吸附试验结果表明,粉煤灰、膨润土对Zn2+的吸附能力相当,但远大于粘土、粉质粘土。平衡吸附模型充分说明,在高浓度下Zn2+在粉煤灰、粘土、粉质粘土上的吸附符合Langmuir等温线。试验结果亦表明,随着吸附剂中Zn2+含量的增加,粉煤灰等吸附剂对Zn2+吸附的百分率均呈减小的趋势。  相似文献   

9.
The mobility of toxic metals in soils or sediments is of great concern to scientists and environmentalists since it directly affects the bioavailability of metals and their movement to surface and ground waters. In this study, a multi-surface soil speciation model for Cd (II) and Pb (II) was developed to predict the partition of metals on various soil solid components (e.g. soil organic matter (SOM), oxide mineral, and clay mineral). In previous study, the sorption of metal cations on SOM and oxide minerals has been evaluated by thermodynamically based surface complexation model. However, metal binding to soil clay fractions was normally treated in a simplistic manner: only cation exchange reactions were considered and exchange coefficient was assumed unity. In this study, the binding of metals onto clays was described by a two-site surface sorption model (a basal surface site and an edge site). The model was checked by predicting the adsorption behavior of Cd (II) and Pb (II) onto three selected Chinese soils as a function of pH and ionic strengths. Results showed that the proposed model more accurately predicted the metal adsorption on soils under studied condition, especially in low ionic strength condition, suggesting that adsorption of metals to soil clay fractions need to be considered more carefully when modeling the partition of trace elements in soils. The developed soil speciation model will be useful when evaluating the movement and bioavailability of toxic metals in soil environment.  相似文献   

10.
Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides   总被引:1,自引:0,他引:1  
Lead sorption efficiencies (sorption per specific surface area) were measured for a number of natural and synthetic Mn and Fe-oxides using a flow-through reactor. The Mn-oxide phases examined included synthetic birnessite, natural and synthetic cryptomelane, and natural and synthetic pyrolusite; the Fe-oxides studied were synthetic akaganéite, synthetic ferrihydrite, natural and synthetic goethite, and natural and synthetic hematite. The sorption flow study experiments were conducted with 10 ppm Pb with an ionic strength of either 0.01 M NaNO3 or 0.01 M KNO3, both at pH 5.5. The experimental effluent solution was analyzed using aqueous spectroscopic methods and the reacted solids were analyzed using microscopy (field emission scanning electron microscopy, FE-SEM), structure analysis (powder X-ray diffraction, XRD), bulk chemical spectroscopy (energy dispersive spectroscopy, EDS), and surface sensitive spectroscopy (X-ray photoelectron spectroscopy, XPS). Overall and under these conditions, the synthetic Mn-oxides have higher sorption efficiencies than the natural Mn-oxides, which in turn are higher than the natural and synthetic Fe-oxides. Only natural pyrolusite had a sorption efficiency as low as the Fe-oxides. Most of the natural and synthetic Fe-oxides examined in this study removed about the same amount of Pb from solution once normalized to BET N2 surface area, although synthetic akaganéite and hematite were significantly less reactive than the rest.It is suggested that the observed efficiency of Mn-oxides for Pb sorption is directly related to internal reactive sites in the structures that contain them (birnessite and cryptomelane, in the case of this study). Comparisons of solution data to XPS data indicated that Pb went into the interlayer of the birnessite, which was supported by XRD; similarly some Pb may go into the tunnels of the cryptomelane structure. Layer structures such as birnessite have the highest Pb sorption efficiency, while the 2 × 2 tunnel structure of cryptomelane has lower efficiencies than birnessite, but higher efficiencies than other Mn- or Fe-oxide structures without internal reactive sites.  相似文献   

11.
This work aimed to investigate the adsorption characteristics, both kinetically and thermodynamically, of Cu(II) and Pb(II) removal from aqueous solutions onto mixed-waste activated carbon, as well as to study the competitive behavior found in mixed heavy metal solution systems. This study shows that activated carbon prepared from mixed waste is an effective adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions, with the aim of detoxifying industrial effluents before their safe disposal onto water surfaces. The adsorption process was characterized in terms of kinetic and thermodynamic studies. In addition, the influence of presence of Cu(II) and Pb(II) in a competitive system was investigated. The results showed that the maximum adsorption capacities were gained at a pH of 6 with a contact time of 180 min, a metal solution concentration of 300 ppm, and an adsorbent dose of 0.3 g/L. The adsorption process was found to follow a pseudo-first-order kinetic model. Thermodynamic parameters such as ΔG o, ΔH o, and ΔS o showed that the sorption process was spontaneous and endothermic in nature. A competitive study demonstrated the applicability of mixed-waste activated carbon to adsorb Cu(II) and Pb(II) from a solution of mixed metals. In addition, the adsorption capacity was found to be as effective as other adsorbents reported in the literature. The developed adsorptive removal procedure was applied for treatment of real wastewater samples and showed high removal efficiency.  相似文献   

12.
王焰新 《地学前缘》2001,8(2):301-307
经济、有效、易获得的生物质和地质材料 (及二者的废弃物 )可用来取代传统的活性炭或离子交换树脂用于去除废水中的重金属。已经公开发表的低成本吸附剂主要可分为两类 :(1)生物质 (包括林业和农业的废弃物 ) :树皮 /富含丹宁酸的物质 ,木质素 ,几丁质 /甲壳质 ,死的生物体 ,苔藓 ,海草 /海藻 /褐藻酸 ,废弃的茶叶 ,稻壳 ,羊毛 ,棉花等 ;(2 )地质材料 (包括矿物利用后的工业废弃物 ) :沸石 ,粘土 ,泥炭 ,有铁氧化物包壳的砂 ,粉煤灰等。其中 ,对于重金属具有强吸附能力的吸附剂有甲壳质、沸石和木质素 ,例如 ,它们对一些重金属的最大吸附能力分别为 :甲壳质对Cd ,Hg ,Pb分别为 5 5 8,112 3 ,796mg/g ,沸石对Pb为 15 5 4mg/g ,木质素对Pb为 15 87mg/g。地质材料的环境利用值得引起地学界和环境工程界更广泛的重视。基于地质材料和水岩相互作用机理的环境污染控制技术有望成为 2 1世纪重要的环保替代技术。由于缺少连续的可比性强的成本信息 ,要比较不同的生物质和地质材料的成本和吸附性能仍较困难。尽管已对低成本吸附剂领域进行了很多研究 ,但要更好地了解低成本吸附剂的作用机理及其实用性 ,仍需要做大量的室内和现场工作。  相似文献   

13.
The sorption of phosphorus by using four different natural materials (marble dust, sawdust, soil, and rice husk) was studied by conducting batch tests and kinetic sorption model. The kinetic sorption model based on a pseudo equation was applied to predict the rate constant of sorption. Thorough investigations to understand the mechanism of phosphorus sorption onto the natural materials using kinetic sorption models, pseudo first- and second-order kinetic sorption model showed that the kinetic sorption is consistent with the second-order model, from which it can be inferred that the mechanism of sorption is chemisorption. Batch tests and kinetic sorption model results showed that by using marble dust as sorbent, among other materials, could remove more than 93 % of phosphorus from aqueous solution.  相似文献   

14.
In some previous work titration and Ni/Zn sorption edge/isotherm measurements carried out under a wide variety of experimental conditions on purified Na-montmorillonite were modelled in terms of cation exchange and surface complexation mass action equations. A major objective of the experimental/modelling programme is to understand and predict sorption in commercial bentonite systems. Since montmorillonite is the dominant clay mineral in bentonite and is often present in a mixed Na/Ca form, a natural extension to the previous investigations was to study Ni/Zn sorption on a conditioned Ca-montmorillonite. An important open question was whether the same basic parameters such as site types, site capacities, and acidity constants could be used for both materials and to see to what extent the Ni and Zn surface complexation constants were influenced by the form of the montmorillonite. Sorption edges for Ni and Zn at different Ca(NO3)2 background electrolyte concentrations, together with sorption isotherms measured over a range of pH values, are presented and modelled using the MINSORB code. The parameters characterising the sorption of Ni and Zn on Na- and Ca-montmorillonite systems are compared. Finally, examples are given that illustrate how the modelling can provide insight into the sorption processes.  相似文献   

15.
The partitioning (or sorption) of trace elements from aqueous solutions onto mineral surfaces and natural organic matter (NOM) has played a major role in determining the trace element content of natural waters. This review examines sorption processes on mineral surfaces for nine trace elements (Cr, Co, Ni, Cu, Zn, Sr, Cd, Hg, Pb), focusing on the results of modern x-ray spectroscopic studies. Such studies provide unique information on the structure and composition of sorption products, including their mode of attachment to mineral surfaces or functional groups in NOM under in situ conditions (i.e., with aqueous solution present at 25°C). The types of chemical reactions (acid-base, ligand exchange, redox, dissolution/reprecipitation) that can occur at mineral-aqueous solution interfaces are also reviewed, and some of the factors that affect the reactivity of mineral surfaces are discussed, including changes in the geometric and electronic structures of mineral surfaces when they first react with aqueous solutions and constraints on the bonding of adions to surface functional groups imposed by Pauling bond valence sums. A summary of electrical double layer (EDL) theory is presented, including the results of several recent x-ray spectroscopic and parameter regression studies of the EDL for metal-(oxyhydr) oxide-aqueous solution interfaces. The effects of common inorganic and organic complexants on the sorption of trace metal cations at mineral-solution interfaces are considered, in the context of spectroscopic studies where possible. The results of sorption studies of trace metal cations on NOM, common bacteria, and marine biomass are reviewed, and the effects of coatings of NOM and microbial biofilms on cation uptake on mineral surfaces are discussed, based on macroscopic and spectroscopic data. The objective here is to assess the relative importance of inorganic versus organic sorption processes in aquatic systems. The paper concludes with a discussion of the effects of water composition on trace element removal mechanisms, with the aim of providing an understanding of the effects of the high salinity of seawater on trace element sorption processes. The information presented in this review indicates that sorption processes on mineral, NOM, and microbial and algal surfaces, including true adsorption and precipitation, are highly effective at removing trace elements from natural waters and generally supports Krauskopf's (1956) conclusion that such processes are likely responsible for the present trace element concentrations in seawater.  相似文献   

16.
The bentonite deposit of Lahij Province, Yemen, has very promising commercial applications due to its mineralogy and physical and chemical properties. It was examined to determine its mineralogical composition, chemical and physical properties of the bentonite deposit, purity and sodium-exchanged bentonite. Modified bentonite was synthesized by exchanging cetyltrimethylammonium cations for inorganic ions on the bentonite and its adsorption properties for ammonium were characterized in batch experiments. Analytical methods were carried out to study the bentonite comprising X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy, chemical analysis and kinetic and isotherm models were also tested. The results have shown that the purification of bentonite resulted in a bentonite fractions of the total sample composed of montmorillonite and <5 % quartz. The XRD data showed that the interlayer spacing (d 001) of bentonite decreased from 15.3 to 12.5 Å and then increased to 19.7 Å. Moreover, high cation exchange capacity, good water absorption and high swelling capacity were also obtained. The results have shown that the modified bentonite was more effective than the natural bentonite for ammonium removal. In addition to that, pseudo-second-order kinetic model, Freundlich and the Langmuir models described the adsorption kinetics and isotherm well. It was concluded that Yemen (Alaslef) bentonite can be potential adsorbents for ammonium removal.  相似文献   

17.
The aim of this study was to remove a known pharmaceutics, dexamethasone, from an aqueous solution using clinoptilolite zeolite (CP). CP is a natural, versatile and inexpensive mineral, which has been investigated and applied in the last few decades. Herein, the experiments were carried out in the common conditions of a batch system in room temperature, and the effects of some parameters such as pH of the solution, initial concentration of dexamethasone, adsorbent dose and contact time were studied. Kinetic and isotherm of adsorption processes of dexamethasone on CP were surveyed in the current study. Results revealed that the maximum efficiency (78 %) occurred in pH = 4. The adsorption process followed a pseudo-second-order kinetic model as well as Freundlich and Sips isotherm models fitted with the experimental data well.  相似文献   

18.
The effects of organic matter (80% humic and 15% fulvic acid) and coexistence of heavy metals (Ni, Pb and Zn) on sorption of three polycyclic aromatic hydrocarbons (PAHs)—acenaphthene, fluorene and fluoranthene—were examined for kaolinite, 60% kaolinite?+?40% sand, and 43% kaolinite?+?42% sand?+?15% bentonite. In total 108 batch sorption tests of PAHs were conducted for three types of clay mineral mixtures in six possible combinations of soil organic matter and heavy metal contents from no heavy metals and organic matter added to maximum organic matter added with spiked heavy metals. Results showed that the existence of metals increased the sorption of PAHs onto kaolinite from 4.7% for acenaphthene to 17.9% for fluoranthene. Organic matter in a kaolinite-sand-bentonite matrix could increase PAH sorption by up to 140% for fluoranthene. In all cases, increases were greater for fluoranthene, a larger PAH molecule. Heavy metals coexisting with organic matter led to enhanced sorption of PAHs compared to clay minerals without organic matter. Synergistic effects of organic matter and heavy metals on PAH sorption increments in the mixtures studied were such that the overall sorption could be 10–41% higher than that based on summation of the separate effects of metals and organics.  相似文献   

19.
The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 × 10−5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II)EQBM) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II)EQBM level of 10−7 M without Fe(II) competition, the reactive transport calculations using a constant Kd approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II)EQBM (10−5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant Kd approach.When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the two competing sorbates and their respective concentrations. At background Fe(II) concentrations of 5.3 × 10−5 M, and a Ni(II)EQBM level of 10−7 M, the Ni(II) breakthrough time was ∼15 times earlier than in the absence of competition. At such Fe(II) concentrations the Ni(II) breakthrough curves at all source concentrations less than 3.5 × 10−5 M (fixed by the NiCO3,S solubility limit) are the same i.e. Ni(II) exhibits linear (low) sorption.Competitive sorption effects can have significant influences on the transport of radionuclides through compacted bentonite i.e. reduce the migration rates. Since, for the case considered here, the Fe(II) concentration in the near field of a high-level radioactive waste repository may change in time and space, the transport of bivalent transition metal radionuclides can only be properly modelled using a multi-species reactive transport code which includes a sorption model.  相似文献   

20.
The present article explores the ability of five different combinations of two adsorbents (Arachis hypogea shell powder and Eucalyptus cameldulensis saw dust) to remove Pb(II) from synthetic and lead acid batteries wastewater through batch and column mode. The effects of solution pH, adsorbent dose, initial Pb(II) concentration and contact time were investigated with synthetic solutions in batch mode. The Fourier transform infrared spectroscopy study revealed that carboxyl and hydroxyl functional groups were mostly responsible for the removal of Pb(II) ions from test solutions. The kinetic data were found to follow pseudo-second-order model with correlation coefficient of 0.99. Among Freundlich and Langmuir adsorption models, the Langmuir model provided the best fit to the equilibrium data with maximum adsorption capacity of 270.2 mg g?1. Column studies were carried out using lead battery wastewater at different flow rates and bed depths. Two kinetic models, viz. Thomas and Bed depth service time model, were applied to predict the breakthrough curves and breakthrough service time. The Pb(II) uptake capacity (q e = 540.41 mg g?1) was obtained using bed depth of 35 cm and a flow rate of 1.0 mL min?1 at 6.0 pH. The results from this study showed that adsorption capacity of agricultural residues in different combinations is much better than reported by other authors, authenticating that the prepared biosorbents have potential in remediation of Pb-contaminated waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号