首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

2.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   

3.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   

4.
Enhanced production of unconventional hydrocarbons in the United States has driven interest in natural gas development globally, but simultaneously raised concerns regarding water quantity and quality impacts associated with hydrocarbon extraction. We conducted a pre‐development assessment of groundwater geochemistry in the critically water‐restricted Karoo Basin, South Africa. Twenty‐two springs and groundwater samples were analyzed for major dissolved ions, trace elements, water stable isotopes, strontium and boron isotopes, hydrocarbons and helium composition. The data revealed three end‐members: a deep, saline groundwater with a sodium‐chloride composition, an old, deep freshwater with a sodium‐bicarbonate‐chloride composition and a shallow, calcium‐bicarbonate freshwater. In a few cases, we identified direct mixing of the deep saline water and shallow groundwater. Stable water isotopes indicate that the shallow groundwater was controlled by evaporation in arid conditions, while the saline waters were diluted by apparently fossil meteoric water originated under wetter climatic conditions. These geochemical and isotopic data, in combination with elevated helium levels, suggest that exogenous fluids are the source of the saline groundwater and originated from remnant seawater prior to dilution by old meteoric water combined with further modification by water‐rock interactions. Samples with elevated methane concentrations (>14 ccSTP/kg) were strongly associated with the sodium‐chloride water located near dolerite intrusions, which likely provide a preferential pathway for vertical migration of deeply sourced hydrocarbon‐rich saline waters to the surface. This pre‐drill evaluation indicates that the natural migration of methane‐ and salt‐rich waters provides a source of geogenic contamination to shallow aquifers prior to shale gas development in the Karoo Basin.  相似文献   

5.
Unconventional natural gas extraction from tight sandstones, shales, and some coal‐beds is typically accomplished by horizontal drilling and hydraulic fracturing that is necessary for economic development of these new hydrocarbon resources. Concerns have been raised regarding the potential for contamination of shallow groundwater by stray gases, formation waters, and fracturing chemicals associated with unconventional gas exploration. A lack of sound scientific hydrogeological field observations and a scarcity of published peer‐reviewed articles on the effects of both conventional and unconventional oil and gas activities on shallow groundwater make it difficult to address these issues. Here, we discuss several case studies related to both conventional and unconventional oil and gas activities illustrating how under some circumstances stray or fugitive gas from deep gas‐rich formations has migrated from the subsurface into shallow aquifers and how it has affected groundwater quality. Examples include impacts of uncemented well annuli in areas of historic drilling operations, effects related to poor cement bonding in both new and old hydrocarbon wells, and ineffective cementing practices. We also summarize studies describing how structural features influence the role of natural and induced fractures as contaminant fluid migration pathways. On the basis of these studies, we identify two areas where field‐focused research is urgently needed to fill current science gaps related to unconventional gas extraction: (1) baseline geochemical mapping (with time series sampling from a sufficient network of groundwater monitoring wells) and (2) field testing of potential mechanisms and pathways by which hydrocarbon gases, reservoir fluids, and fracturing chemicals might potentially invade and contaminate useable groundwater.  相似文献   

6.
Dissolved organic carbon (DOC) originating in peatlands can be mineralized to carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases. Knowledge of the dynamics of DOC export via run‐off is needed for a more robust quantification of C cycling in peatland ecosystems, a prerequisite for realistic predictions of future climate change. We studied dispersion pathways of DOC in a mountain‐top peat bog in the Czech Republic (Central Europe), using a dual isotope approach. Although δ13CDOC values made it possible to link exported DOC with its within‐bog source, δ18OH2O values of precipitation and run‐off helped to understand run‐off generation. Our 2‐year DOC–H2O isotope monitoring was complemented by a laboratory peat incubation study generating an experimental time series of δ13CDOC values. DOC concentrations in run‐off during high‐flow periods were 20–30 mg L?1. The top 2 cm of the peat profile, composed of decaying green moss, contained isotopically lighter C than deeper peat, and this isotopically light C was present in run‐off in high‐flow periods. In contrast, baseflow contained only 2–10 mg DOC L?1, and its more variable C isotope composition intermittently fingerprinted deeper peat. DOC in run‐off occasionally contained isotopically extremely light C whose source in solid peat substrate was not identified. Pre‐event water made up on average 60% of the water run‐off flux, whereas direct precipitation contributed 40%. Run‐off response to precipitation was relatively fast. A highly leached horizon was identified in shallow catotelm. This peat layer was likely affected by a lateral influx of precipitation. Within 36 days of laboratory incubation, isotopically heavy DOC that had been initially released from the peat was replaced by isotopically lighter DOC, whose δ13C values converged to the solid substrate and natural run‐off. We suggest that δ13C systematics can be useful in identification of vertically stratified within‐bog DOC sources for peatland run‐off.  相似文献   

7.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   

8.
Hydrocarbon compositions and δ13C values for methane of fourteen natural seep gases and four underwater vents in the northwestern Gulf of Mexico are reported. The C1/(C2 + C3) ratios of the seep gas samples ranged from 68 to greater than 1000, whereas δPDB13C values varied from ?39.9 to ?65.5‰. Compositions suggest that eleven of the natural gas seeps are produced by microbial degradation whereas the remaining three have a significant thermocatalytically produced component. Contradictions in the inferences drawn from molecular and isotopic compositions make strict interpretation of the origins of a few of the samples impossible.  相似文献   

9.
Baseline characterization of concentrations and isotopic values of dissolved natural gases is needed to identify contamination caused by the leakage of fugitive gases from oil and gas activities. Methods to collect and analyze baseline concentration‐depth profiles of dissolved CH4 and C2H6 and δ13C‐CH4 in shales and Quaternary clayey tills were assessed at two sites in the Williston Basin, Canada. Core and cuttings samples were stored in Isojars® in a low O2 headspace prior to analysis. Measurements and multiphase diffusion modeling show that the gas concentrations in core samples yield well‐defined and reproducible depth profiles after 31‐d equilibration. No measurable oxidative loss or production during core sample storage was observed. Concentrations from cuttings and mud gas logging (including IsoTubes®) were much lower than from cores, but correlated well. Simulations suggest the lower concentrations from cuttings can be attributed to drilling time, and therefore their use to define gas concentration profiles may have inherent limitations. Calculations based on mud gas logging show the method can provide estimates of core concentrations if operational parameters for the mud gas capture cylinder are quantified. The δ13C‐CH4 measured from mud gas, IsoTubes®, cuttings, and core samples are consistent, exhibiting slight variations that should not alter the implications of the results in identifying the sources of the gases. This study shows core and mud gas techniques and, to a lesser extent, cuttings, can generate high‐resolution depth profiles of dissolved hydrocarbon gas concentrations and their isotopes.  相似文献   

10.
The Luliang and Baoshan basins are two small ba- sins in Yunnan Province. In the recent ten years or so, there have been found a number of natural gas pools of commercial importance in the two basins. Although the gas pools are small in size, the natural …  相似文献   

11.
The abundance and isotopic composition of noble gases were determined in samples of CO2 well gas from Harding County, New Mexico. Our results confirm the presence of radiogenic129Xe and fissiogenic131–136Xe. Relative to noble gases in air, the CO2 gas is selectively depleted in the lighter weight, nonradiogenic noble gases, except at neon. It is suggested that loss of atmospheric neon into space could account for an apparent excess of neon in juvenile gases.  相似文献   

12.
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point‐specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1‐D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine‐Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ13CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1‐D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine‐Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream‐gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.  相似文献   

13.
There is concern about adverse impacts of natural gas (primarily methane) production on groundwater quality; however, data on trace element concentrations are limited. The objective of this study was to compare the distribution of trace elements in groundwater samples with and without dissolved methane in aquifers overlying the Barnett Shale (Hood and Parker counties, 207 samples) and the Haynesville Shale (Panola County, 42 samples). Both shales have been subjected to intensive hydraulic fracturing for gas production. Well clusters with high dissolved methane were previously found in these counties and are thought to be of natural origin. Overall, groundwater in these counties is of excellent quality with typically low elemental concentrations. Several statistical analyses strongly suggest that most trace element concentrations, generally at low background levels, are no higher and even reduced when dissolved methane is present. In addition, trace element concentrations are not correlated with distance to gas wells. The reduction in trace element concentrations is attributed to anaerobic microbial degradation of methane, is associated with a higher pH (>8.5), and, likely, with precipitation of carbonates and pyrite and formation of clays. Trace and other elements are likely incorporated within the precipitating mineral crystalline network or sorbed. High pH values are found throughout these high‐methane clusters (e.g., Parker‐Hood cluster), even in subregions where methane is not present, which is consistent with a pervasive natural origin of dissolved methane rather than a limited gas well source.  相似文献   

14.
Subsurface brines with high nitrate (NO3?) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ~525 mg/L (as N), NO3? in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ~17‰), which is an enigma. A NO3? solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3? could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density‐driven free‐convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near‐surface oxygenated NO3? bearing water downward where it encounters reducing conditions and mixes with oxygen‐free ascending geologic brines. In this environment, NO3? is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3? in heavy isotopes. The isotopically fractionated NO3? and nitrogen gas return to the near‐surface oxidizing environment on the upward displacement leg of the free‐convection cycle, where the nitrogen gas is released to the atmosphere and new NO3? is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000‐year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3?.  相似文献   

15.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Hu  AnPing  Li  Jian  Zhang  WenZheng  Li  ZhiSheng  Hou  Lu  Liu  QuanYou 《中国科学:地球科学(英文版)》2008,51(1):183-194

The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.

  相似文献   

18.
The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

19.
The aim of this study is to evaluate the impact of the application of industrial fertilizers and liquid swine manure in groundwater in two pilot agricultural areas, San Pedro and Pichidegua, which have been under long‐term historic use of fertilizers. A comprehensive hydrogeological investigation was carried out to define the geology and the groundwater flow system. Chemical and isotopic tools were used to evaluate the distribution and behavior of the nitrate in the groundwater. The isotopic tools included δ18O, δ2H, and 3H, which provide information about the origin and residence time of the groundwater; δ15N‐NO3? and δ18O‐NO3?, which provide information about nitrate sources and processes that can affect nitrate along the groundwater flow system. The application rate of liquid manure and other fertilizers all together with land uses was also evaluated. The hydrogeological investigation identified the presence of a confined aquifer underneath a thick low‐permeability aquitard, whose extension covers most of the two study areas. The nitrate concentration data, excepting a few points in zones located near recharge areas in the upper part of the basins and lower areas at the valley outlets (San Pedro), showed nitrate concentration below 10 mgN/L at the regional scale. The isotope data for nitrate showed no influence of the liquid swine manure in the groundwater at the regional scale, except for the high part of the basins and the outlet of the San Pedro valley, which are areas fertilized by manure. This data showed that the regional aquifer on both pilot study areas is protected by the thick low‐permeability aquitard, which is playing an important role on nitrate attenuation. Evidence of denitrification was also found on both shallow and deep groundwater in the Pichidegua site. This study showed that a comprehensive hydrogeological characterization complemented by chemical and isotope data is key for understanding nitrate distribution and concentration in aquifers from areas with intensive agriculture activities.  相似文献   

20.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号