首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contamination of groundwater with chlorinated ethenes is common and represents a threat to drinking water sources. Standard anaerobic bioremediation methods for the highly chlorinated ethenes PCE and TCE are not always effective in promoting complete degradation. In these cases, the target contaminants are degraded to the daughter products DCE and/or vinyl chloride. This creates an additional health risk, as vinyl chloride is even more toxic and carcinogenic than its precursors. New treatment modalities are needed to deal with this widespread environmental problem. We describe successful bioremediation of a large, migrating, dilute vinyl chloride plume in Massachusetts with an aerobic biostimulation treatment approach utilizing both oxygen and ethene. Initial microcosm studies showed that adding ethene under aerobic conditions stimulated the rapid degradation of VC in site groundwater. Deployment of a full‐scale treatment system resulted in plume migration cutoff and nearly complete elimination of above‐standard VC concentrations.  相似文献   

2.
At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long‐term groundwater monitoring, and after 4 years of remediation, the development of degradation in the clay till matrix was investigated by high‐resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope fractionation of trichloroethene, cis‐dichloroethene (cis‐DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where degradation was restricted to narrow zones around sand lenses and stringers, were also observed. After 4 years of remediation, an average mass reduction of 24% was estimated. Comparison of the results with model simulation scenarios indicate that a mass reduction of 85% can be obtained within approximately 50 years without further increase in the narrow reaction zones if no donor limitations occur at the site. Long‐term monitoring of the concentration of chlorinated ethenes in the underlying chalk aquifer revealed that the aquifer was affected by the more mobile degradation products cis‐DCE and VC generated during the remediation by ERD.  相似文献   

3.
Water is one of the major environmental factors limiting plant growth and survival in the Mediterranean region. Quercus suber L. woodlands occupy vast areas in the Iberian Peninsula, frequently under shallow water table conditions. The relative magnitude of soil and groundwater uptake to supply transpiration is not easy to evaluate under these circumstances. We recently developed a conceptual framework for the functioning of the root system in Q. suber that simulates well tree transpiration, based on two types of root behaviour: shallow connected and deep connected. Although this significantly improved knowledge on the functional traits of Mediterranean Q. suber, the approach has the limitation of requiring root sap flow data, which are seldom available. In this work, we present alternative methodologies to assess if trees are connected to groundwater and to estimate the soil and groundwater contributions to tree transpiration. We provide evidence on the tree unrestricted access to groundwater solely based on meteorological, stem sap flow and leaf water potential data. Using a soil mass balance approach, we estimated the yearly soil and groundwater contributions to tree transpiration: 69.7% and 30.3%, respectively. Groundwater uptake became dominant in the dry summer: 73.2% of tree transpiration. Results reproduce extremely well those derived from root modelling. Because of its simplicity both in formulation and data requirements, our approach is potentially liable to be adapted to other groundwater‐dependent Mediterranean oak sites, where interactions between land use and water resources may be relevant. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
High‐resolution soil and groundwater monitoring was performed to assess the long‐term impacts of bioremediation using bioaugmentation with a dechlorinating microbial consortium (and sodium lactate as the electron donor) in a well‐characterized trichloroethene (TCE) dense nonaqueous phase liquid (DNAPL) source area. Monitoring was performed up to 3.7 years following active bioremediation using a high‐density monitoring network that included several discrete interval multi‐level sampling wells. Results showed that despite the absence of lactate, lactate fermentation transformation products, or hydrogen, biogeochemical conditions remained favorable for the reductive dechlorination of chlorinated ethenes. In locations where soil data showed that TCE DNAPL sources persisted, local contaminant rebound was observed in groundwater, whereas no rebound or continuous decreases in chlorinated ethenes were observed in locations where DNAPL sources were treated. While ethene levels measured 3.7 years after active treatment suggested relatively low (2 to 30%) dechlorination of the parent TCE and daughter products, carbon stable isotope analysis showed that the extent of complete dechlorination was much greater than indicated by ethene generation and that the estimated first‐order rate constant describing the complete dechlorination of TCE at 3.7 years following active bioremediation was approximately 3.6 y–1. Overall, results of this study suggest that biological processes may persist to treat TCE for years after cessation of active bioremediation, thereby serving as an important component of remedial treatment design and long‐term attenuation.  相似文献   

5.
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.  相似文献   

6.
A groundwater plume containing high concentrations of pharmaceutical compounds, mainly sulfonamides, barbiturates, and ethyl urethane, in addition to chlorinated ethenes and benzene was investigated. The contamination originating from a former pharmaceutical industry discharges into a multilayered aquifer system and a downgradient stream. In this study, geological and hydrogeological data were integrated into a numerical flow model to examine identified trends using statistical approaches, including principal component analysis and hierarchal cluster analysis. A joint interpretation of the groundwater flow paths and contaminant concentrations in the different compartments (i.e., groundwater and hyporheic zone) provided insight on the transport processes of the different contaminant plumes to the stream. The analysis of historical groundwater concentrations of pharmaceutical compounds at the site suggested these compounds are slowly degrading. The pharmaceutical compounds migrate in both a deep semiconfined aquifer, as well as in the shallow unconfined aquifer, and enter the stream along a 2-km stretch. This contrasted with the chlorinated ethenes, which mainly discharge to the stream as a focused plume from the unconfined aquifer. The integrated approach developed here, combining groundwater flow modeling and statistical analyses of the contaminant concentration data collected in groundwater and the hyporheic zone, lead to an improved understanding of the observed distribution of contaminants in the unconfined and semiconfined aquifers, and thus to their discharge to the stream. This approach is particularly relevant for large and long-lasting contaminant sources and plumes, such as abandoned landfills and industrial production sites, where field investigations may be very expensive.  相似文献   

7.
The natural attenuation behavior of a ground water contaminant plume containing chromium and chlorinated ethenes in glaciated sediments was assessed using traditional and nontraditional methods. The mixed waste is transported through and attenuated within an estuarine influenced ground water aquifer of spatially varying redox character and organic carbon content. Contaminant fate and speciation were assessed as a function of geochemical conditions. Total, speciation-based, and sequential chemical extraction analyses were performed to determine contaminant partitioning and the redox capacity of the aquifer. Chromium speciation and partitioning were correlated with the reductive capacity and redox conditions of the aquifer sediments spatially distributed within the aquifer. Reductive dechlorination and partitioning of chlorinated ethenes were correlated with the organic carbon content and redox conditions of the aquifer sediments. The data showed that sharp redox gradients existed within the aquifer. Active reduction and retardation of both chromium and chlorinated ethenes was exhibited. The aqueous hexavalent chromium concentrations decreased to near nondetect levels in the vicinity of the receptor, whereas degradation products of higher-order chlorinated ethenes increased as a fraction of the total chlorinated ethene concentrations along the length of the plume. The potential for competition for reducing power under specific cases within the aquifer was suggested by the data, highlighting the need to include contaminant interactions in natural attenuation assessments.  相似文献   

8.
Discharge of saline groundwater from Eucalyptus forests on a semi-arid floodplain was directly determined by first measuring transpiration rates from the forests, and then partitioning the transpiration flux into groundwater discharge and soil water depletion. This partitioning was achieved by identifying the source of the transpired water with naturally occurring stable isotopes of water. Transpiration rates were low, being about 0.3 mm day−1 from three E. largiflorens sites and up to 2 mm day−1 from an E. camaldulensis site. There was no significant variation in transpiration across seasons, indicating that transpiration was limited by environmental factors other than evaporative demand. Despite its salinity (electrical conductivities of 11–33 dS m−1), the groundwater was used by the forests at all sites and all times, and made up 100% of transpiration in more than half of the measurements, and 40–80% in the remainder. There was some consistency in water uptake patterns. E. camaldulensis tended to take up shallow soil water and groundwater simultaneously, as did trees at one of the E. largiflorens sites. At the driest sampling time, however, groundwater was the only source of water for trees at both of these sites. Trees at the remaining two E. largiflorens sites generally relied solely on the groundwater. The tree water source results indicate that groundwater discharge fluxes were between 40 and 100% of the transpiration fluxes at these sites. These groundwater discharge fluxes were small in terms of regional groundwater balances, but would be important in the salinisation of the soils. Additionally, uptake of water from the soil profile by the trees substantially increased groundwater discharge compared with discharge from the soils had they been bare of vegetation.  相似文献   

9.
Xenobiotic organic compounds can be discharged from contaminated groundwater inflow and may seep into streams from multiple pathways with very different dynamics, some not fully understood. In this study, we investigated the spatio-temporal variation of chlorinated ethenes discharging from a former industrial site (with two main contaminant sources, A and B) into a stream system in a heterogeneous clay till setting in eastern Denmark. The investigated reach and near-stream surroundings are representative of peri-urban settings, with a mix of high channel alteration and more natural stream environment. We therefore propose an approach for risk assessing impacts arising from such complex contamination patterns, accounting for potential spatio-temporal fluctuations and presence of multiple pathways. Our study revealed substantial variations in pathway contributions and overall contaminant mass discharge to the stream. Variable contaminant contributions arising from both groundwater seepage and urban drains were identified in the channelized part of the north stream, primarily from source A. Furthermore, variations in the hyporheic and shallow groundwater flows were found to enhance contaminant transport from source B. These processes result in an increase of the overall mass of contaminant discharged, correlating with the channels' flow. Thus, an in-stream control plane approach was found to be an effective method for integrating multiple and variable discharge contributions quantitatively, although information on specific contaminant sources is lost. This study highlights the complexity and variability of contaminant fluxes occurring at the interface between groundwater and peri-urban streams, and calls for the consideration of these variations when designing monitoring programs and remedial actions for contaminated sites with the potential to impact streams.  相似文献   

10.
Water transpired by trees has long been assumed to be sourced from the same subsurface water stocks that contribute to groundwater recharge and streamflow. However, recent investigations using dual water stable isotopes have shown an apparent ecohydrological separation between tree‐transpired water and stream water. Here we present evidence for such ecohydrological separation in two tropical environments in Puerto Rico where precipitation seasonality is relatively low and where precipitation is positively correlated with primary productivity. We determined the stable isotope signature of xylem water of 30 mahogany (Swietenia spp.) trees sampled during two periods with contrasting moisture status. Our results suggest that the separation between transpiration water and groundwater recharge/streamflow water might be related less to the temporal phasing of hydrologic inputs and primary productivity, and more to the fundamental processes that drive evaporative isotopic enrichment of residual soil water within the soil matrix. The lack of an evaporative signature of both groundwater and streams in the study area suggests that these water balance components have a water source that is transported quickly to deeper subsurface storage compared to waters that trees use. A Bayesian mixing model used to partition source water proportions of xylem water showed that groundwater contribution was greater for valley‐bottom, riparian trees than for ridge‐top trees. Groundwater contribution was also greater at the xeric site than at the mesic–hydric site. These model results (1) underline the utility of a simple linear mixing model, implemented in a Bayesian inference framework, in quantifying source water contributions at sites with contrasting physiographic characteristics, and (2) highlight the informed judgement that should be made in interpreting mixing model results, of import particularly in surveying groundwater use patterns by vegetation from regional to global scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Brush removal is widely practiced as a tool for increasing groundwater recharge, but its efficacy depends greatly on the way in which the removed species interact with the hydrological system relative to the vegetation replacing it. We examined the effects of Ashe juniper removal in the recharge zone of the Edwards Aquifer, Texas, USA, a karst aquifer. The study was conducted in an Ashe juniper (Juniperus ashei)–live oak (Quercus fusiformis) woodland on a hill slope composed of rocky, shallow soils over fractured limestone bedrock. Ashe juniper is a native species that has been encroaching grasslands and savannas over the past century. In September 2008, a plot was cleared of 90% of its juniper trees. Tree transpiration, predawn water potentials and vegetation cover across the cleared plot and an adjacent reference site were measured from May 2009 to December 2011. Stand‐level tree transpiration from May 2009 to March 2010 was diminished by a severe summer drought in 2009, from which trees were slow to recover. Subsequently, tree transpiration was 5–10× higher in the woodland compared to the clearing. For all of 2011, also a drought year, tree transpiration in the woodland exceeded precipitation inputs, indicating a high capacity for water storage at the study site. However, site differences for oak trees were generally larger than for juniper trees. While juniper removal accounted for a 431 mm year?1 difference in tree transpiration between sites, vegetation cover in the clearing increased from 42% to 90% over two years, suggesting that understory growth was increasingly compensating for the loss of juniper transpiration. We conclude that the removal of a relatively shallow‐rooted tree, when replaced with herbaceous vegetation and low shrubs, has little effect on deep recharge. By contrast, successive years of precipitation extremes may be more effective increasing recharge by lowering the water transport capacity of trees in the aftermath of severe drought. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Riparian vegetation is important for stream functioning and as a major landscape feature. For many riparian plants, shallow groundwater is an important source of water, particularly in areas where rainfall is low, either annually or seasonally, and when extended dry conditions prevail for all or part of the year. The nature of tree water relationships is highly complex. Therefore, we used multiple lines of evidence to determine the water sources used by the dominant tree species Eucalyptus camaldulensis (river red gum), growing in riparian and floodplain areas with varying depth to groundwater and stream perenniality. Dendrometer bands were used to measure diel, seasonal, and annual patterns of tree water use and growth. Water stable isotopes (δ2H and δ18O) in plant xylem, soil water, and groundwater were measured to determine spatial and temporal patterns in plant water source use. Our results indicated riparian trees located on relatively shallow groundwater had greater growth rates, larger diel responses in stem diameter, and were less reactive to extended dry periods, than trees in areas of deep groundwater. These results were supported by isotope analysis that suggested all trees used groundwater when soil water stores were depleted at the end of the dry season, and this was most pronounced for trees with shallow groundwater. Trees may experience more frequent periods of water deficit stress and undergo reduced productivity in scenarios where water table accessibility is reduced, such as drawdown from groundwater pumping activities or periods of reduced rainfall recharge. The ability of trees to adapt to changing groundwater conditions may depend on the speed of change, the local hydrologic and soil conditions as well as the species involved. Our results suggest that Ecamaldulesis growing at our study site is capable of utilizing groundwater even to depths >10 m, and stream perenniality is likely to be a useful indicator of riparian tree use of groundwater.  相似文献   

13.
A field demonstration was performed at Edwards Air Force Base to assess bioaugmentation for treatment of a well‐characterized tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) source area in fractured rock. Groundwater recirculation was employed to deliver remedial amendments, including bacteria, to facilitate reductive dechlorination and enhance DNAPL dissolution. An active treatment period of 9 months was followed by a 10‐month posttreatment rebound evaluation. Dechlorination daughter products were observed in both the shallow and deep fracture zones following treatment. In the shallow fracture zone, the calculated DNAPL mass removed was approximately equal to the DNAPL mass estimated using partitioning tracer testing, and no rebound in chlorinated ethenes or ethene was observed during the posttreatment period. A maximum DNAPL dissolution enhancement factor of 5 was observed in the shallow fracture zone. In the deep fracture zone, only approximately 45% of the DNAPL mass—as estimated via partitioning tracer testing—was removed and rebound in the total molar chlorinated ethenes + ethene was observed. The difference in behavior between the shallow and deep fracture zones was attributed to DNAPL architecture and the fracture flow field.  相似文献   

14.
Vegetation has a major influence on the water and energy balance of the earth's surface. In the last century, human activities have modified land use, inducing a consequent change in albedo and potential evapotranspiration. Linear vegetation structures (hedgerows, shelterbelts, open woodland, etc) were particularly abundant but have declined considerably over the past several decades. In this context, it is important to quantify their effect on water and energy balance both on a global scale (climate change and weather prediction) and on a local scale (soil column, hillslope and watershed). The main objective of this study was to quantify the effect of hedgerows on the water cycle by evaluating spatial and temporal variations of water balance components of a hillslope crossed by a hedgerow. Water flow simulation was performed using Hydrus‐2D to emphasize the importance of transpiration in the water balance and to evaluate water extraction from groundwater. Model validation was performed by comparing simulated and observed soil matrix potentials and groundwater levels. Hedgerow transpiration was calculated from sap flow measurements of four trees. Water balance components calculated with a one‐dimensional water balance equation were compared with simulations. Simulation runs with and without tree root uptake underlined the effect of hedgerow transpiration, increasing capillary rise and decreasing drainage. Results demonstrated that the spatial and temporal variability of water balance components was related to the hedgerow presence as well as to the meteorological context. The relations between transpiration, groundwater proximity and soil‐water availability determined the way in which water balance components were affected. Increased capillary rise and decreased drainage near hedges were related to the high transpiration of trees identified in this study. Transpiration reached twice the potential evapotranspiration when groundwater level and precipitation amounts were high. Water balance analysis showed that transpiration was a substantial component, representing 40% of total water output. These results may offer support for improving hydrological models by including the effect of land use and land cover on hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl? concentrations and the possibility of using Cl? as an indicator of transpiration and water movements near the tree rows. Cl? concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl? concentrations, with very high values up to 2 g l?1 in the unsaturated zone and 1·2 g l?1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60–70 mg l?1) in the deeper part of the groundwater. Cl? accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl? accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl? concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Spatial and temporal variation in wet canopy conditions following precipitation events can influence processes such as transpiration and photosynthesis, which can be further enhanced as upper canopy leaves dry more rapidly than the understory following each event. As part of a larger study aimed at improving land surface modelling of evapotranspiration processes in wet tropical forests, we compared transpiration among trees with exposed and shaded crowns under both wet and dry canopy conditions in central Costa Rica, which has an average 4200 mm annual rainfall. Transpiration was estimated for 5 months using 43 sap flux sensors in eight dominant, ten midstory and eight suppressed trees in a mature forest stand surrounding a 40‐m tower equipped with micrometeorological sensors. Dominant trees were 13% of the plot's trees and contributed around 76% to total transpiration at this site, whereas midstory and suppressed trees contributed 18 and 5%, respectively. After accounting for vapour pressure deficit and solar radiation, leaf wetness was a significant driver of sap flux, reducing it by as much as 28%. Under dry conditions, sap flux rates (Js) of dominant trees were similar to midstory trees and were almost double that of suppressed trees. On wet days, all trees had similarly low Js. As expected, semi‐dry conditions (dry upper canopy) led to higher Js in dominant trees than midstory, which had wetter leaves, but semi‐dry conditions only reduced total stand transpiration slightly and did not change the relative proportion of transpiration from dominant and midstory. Therefore, models that better capture forest stand wet–dry canopy dynamics and individual tree water use strategies are needed to improve accuracy of predictions of water recycling over tropical forests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Mineralization of 14C‐radiolabled vinyl chloride ([1,2‐14C] VC) and cis‐dichloroethene ([1,2‐14C] cis‐DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene‐exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo‐first‐order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First‐order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen‐linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen‐linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.  相似文献   

20.
Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)‐containing minerals has been observed in both laboratory and field studies. These reactive iron minerals form under iron‐ and sulfate‐reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are chemically reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents by reactive iron minerals, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, dehydrohalogenation, and hydrolysis reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) have the potential to serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity for degradation of chlorinated solvents can be approximated as follows: disordered FeS > FeS > Fe(0) > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite. Reaction kinetics are also influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as monitored natural attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号