首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Princeton Ocean Model with realistic bottom topography has been used to investigate the summer temperature decrease in the past 25 years in Fukuoka Bay. The vertical mixing of the model is expressed by a scheme that effectively includes the influences of interannual variations of tidal currents and wind. The results show that the historical temperature decrease in summer has been caused by tidal currents and wind weakening in the past 25 years in Fukuoka Bay. The weakening of tidal currents and wind gives rise to weakening of the vertical mixing, and to enhancement of the estuarine circulation in the bay. The enhancement of the estuarine circulation activates the inflow of open-ocean water toward Fukuoka Bay. Coastal water in summer has therefore tended to be colder and more saline in the past 25 years. This interannual variation in coastal waters is called “open-oceanization” in this study. On the basis of the numerical model, it is anticipated that the temperature will decrease by 0.2°C in the next 25 years in Fukuoka Bay if the tide and wind weaken persistently as in the present bay.  相似文献   

2.
通过采用不规则的三角网格和有限体积法的FVCOM模式,建立三维潮流数值模型。利用大海域计算得到的调和常数值作为开边界的输入值,模拟出崖城附近海域的潮流和潮位变化情况。在潮流、潮位验证正确的前提下,利用欧拉—拉格朗日追踪方法,建立了溢油轨迹预测模型,进行崖城油气田附近海域溢油中心轨迹的预测,同时预测了溢油漂移的平均速率和油膜抵达敏感区的时间,为油气田实施应急措施提供技术支持。  相似文献   

3.
近70年胶州湾水动力变化的数值模拟研究   总被引:2,自引:1,他引:1  
采用无结构三角形网格海洋模式FVCOM,基于胶州湾不同年代的岸线和水深地形条件,建立胶州湾及其邻近海域各年代的三维潮汐潮流数值模型,从数值模拟角度分析和比较胶州湾不同年代纳潮量、潮汐潮流、水交换率等水动力参数的变化。结果表明:随着胶州湾水域总面积不断缩小,纳潮量在逐渐减小,2008年全湾的纳潮量相对于1935年减少了31.5%,约合3.9×108 m3;海湾流场结构变化很小,流速呈减小趋势;胶州湾欧拉余流"团团转"的多涡结构基本保持不变,最大值都发生在团岛附近;海湾的水交换能力趋弱,对整个胶州湾水体的半交换时间进行海湾平均,不同年代5套岸线下海湾的水体半交换时间分别是37.0 d,36.7 d,39.2 d,39.7 d和40.8 d。  相似文献   

4.
基于FVCOM的渤海冬季三维风生环流数值模拟   总被引:2,自引:0,他引:2  
利用FVCOM海洋模型以及MM5气象模式预报风场,对渤海冬季三维风生环流进行了数值模拟,结果显示:渤海风生环流具有显著的三维结构,表层基本沿风向运动,量值在5~10 cm/s,海峡处流速可达15 cm/s,底层有明显的补偿流,量值<3 cm/s;深度平均流环流状态明显,渤海海峡海流北进南出,渤海中部以及辽东湾为一顺时针环流,渤海湾以及莱州湾基本呈逆时针环流。文章通过对比实验,进一步讨论了海面风应力以及海底地形对渤海环流的不同影响,得出:在渤海中部风应力的切变涡度是形成顺指针流型的主要驱动力;除渤海中部以外,渤海冬季流型受地形作用的影响要大于海面风场的切变涡度。  相似文献   

5.
基于采用无结构网格和有限体积方法的FVCOM陆架模式,考虑8个主要的天文分潮,建立胶州湾三维高分辨率数值模型来重现和研究其潮汐潮流变化状况。与实测资料对比验证表明,模拟结果与实测值吻合较好。在此基础上,根据模拟结果计算得到了较以往更为精细的同潮图和潮汐、潮流、余流分布特征。研究结果揭示,最大可能潮流和最大余流都发生在团岛附近,流速分别可达2.14和0.43 m/s;除了湾口附近前人报道过的4个余流系统外,还在中部首次揭示了2个相对较弱的余流系统;潮流能通量在内外湾口呈"左进右出"的结构;胶州湾的平均纳潮量为8.31亿m3;染色试验表明,胶州湾30 d的水交换率为36.8%。  相似文献   

6.
分别用Ekman有限深海风漂流计算公式,普林斯顿海洋模式(POM)数值计算了南黄海风漂流。通过对这两种方法的计算结果的对比分析得出:在水深较小时,模式计算的风漂流场与公式计算结果较为接近;而在水深较大时公式计算所得风漂流场与实际流场相差较大,模式计算的风漂流场则基本再现了夏季南黄海的环流结构;风速越大,两种计算方法所得的流场之间的差别越大。同时从数值试验的角度还得到夏季由于风速普遍偏小,风场对环流结构的影响都相对较小,热盐效应是控制夏季环流的主导因素。但当风速增大到一定程度时,环流结构会发生根本改变。  相似文献   

7.
在湛江附近海域建立了三维动边界水动力模型,通过验证,结果与观测数据符合良好,并在此模型基础上分别模拟计算了湛江东海岛填海大堤现状以及1958年大堤修建之前湛江海域的水动力场,通过两种情况下的流场、潮位、纳潮量以及水交换率的比较,分析了东海岛大堤的存在对湛江湾水动力环境的影响。  相似文献   

8.
Jennifer A. Shore   《Ocean Modelling》2009,30(2-3):106-114
An unstructured grid, finite-volume, 3-dimensional primitive equation, sigma-coordinate terrain following ocean model (FVCOM) has been applied to Lake Ontario to investigate its monthly climatological circulation with a focus on Kingston Basin. Kingston Basin, in the northeastern end of Lake Ontario, sits between the main body of the lake and the outflowing St. Lawrence River and is adjacent to the Bay of Quinte Area of Concern designated by the International Joint Commission. The focus of this study is to use the unstructured model FVCOM to model the mean circulation in the Basin. Results showed that the FVCOM model can take up to 3 years to spin-up from rest for a wind-forced, almost fully enclosed lake model. The model accurately reproduced the current flow field within the main body of the lake and compared favourably to the flow field observed during the International Field Year for the Great Lakes (IFYGL) in Kingston Basin. Transport streamfunction results show that the structure of the flow into Kingston Basin from the main body of the lake changes throughout the year.  相似文献   

9.
考虑发电机尾流作用的潮流能理论可开发量的评估   总被引:1,自引:1,他引:0  
In this study, we construct one 2–dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model(FVCOM). In the 2–D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect.  相似文献   

10.
The Hangzhou Bay faces frequent threats from typhoon-induced storm surge and has attracted considerable attentions of coastal researchers and environmental workers. A three-dimensional storm surge model system based on Finite-Volume Coastal Ocean Model (FVCOM) and analytical cyclone model is applied to investigate the hydrodynamic response in the Hangzhou Bay to tropical typhoon. This model has been used to reproduce the storm surge generated by Typhoon Agnes (No. 8114) and the simulated wind field and water elevations have been compared with the available field observations. A series of numerical experimental cases have been conducted to study the effects of land reclamation project (shoreline relocation and seabed deformation) and cyclonic parameters (minimal central pressure (MCP), radius to maximal wind (RMW) and translation speed (TS)) on the hydrodynamics in the Hangzhou Bay. The results show that the shoreline relocation and seabed deformation could generate much higher storm surge in the vicinity of reclamation project with the shoreline relocation making main contribution (about 70%) to this increase. It is found that among the cyclonic parameters, RMW is the most important factor affecting the peak surge in the Hangzhou Bay.  相似文献   

11.
胶州湾多分潮漫滩数值模拟研究   总被引:3,自引:0,他引:3  
在普林斯顿海洋模式(POM)数值模型的基础上加入了漫滩格式,通过对胶州湾1个月实测潮位资料的调和分析,选取了5个较大的分潮,首次对胶州湾进行了多分潮的潮位和潮流数值模拟,模拟结果与实测资料符合较好。  相似文献   

12.
《Coastal Engineering》2006,53(1):49-64
A large dyke built in 1997 in Isahaya Bay (the spatial scale of about 10 km) in Ariake Bay (about 80 km) raises huge scientific and social discussions in Japan. It is said that, since the construction of the dyke, physical and ecosystem environments have changed and fishery has been damaged enormously. On the other hand, it is known that the Density Current Generator is successfully enhancing water quality in Hazama Inlet (the spatial scale of 3 km) of Gokasho Bay. In this study, we conducted numerical and physical model simulations on the hydrodynamics to investigate whether the apparatus is also applicable to Isahaya Bay in Ariake Bay. A laboratory-scale rotating hydraulic model and a three-dimensional numerical code called the MEC Ocean Model were adopted for the physical and numerical simulations, respectively. The MEC Ocean Model has a special feature, which is a hybrid of hydrostatic and nonhydrostatic models. Tests in a simple bay elucidated the importance of the nonhydrostatic model nested in the hydrostatic model, i.e. the former can simulate the appropriate intrusion depth of the mid-density water discharged in stratification. The numerical results for Ariake Bay suggested that the water discharged from the apparatus spreads in the head of the bay within a couple of weeks with nontrivial concentration of nutrients. This was also confirmed by the physical model test by using the luminance measurement of dye spread.  相似文献   

13.
天津海域围填海工程对渤海湾水交换的影响研究   总被引:1,自引:0,他引:1  
利用三维海洋数值模型FVCOM,进行渤海湾三维水动力和水交换数值模拟,经实测潮汐和潮流资料验证,模型模拟结果较好。然后采用该模型对渤海湾内的水体水交换能力进行定量研究。研究结果表明,在天津海域进行围填海工程之前渤海湾水体的半交换周期为300 d左右,围填海之后,水体半交换周期延长25 d,渤海湾西部水体的水交换率下降可达10%,半交换周期延长92 d。尤其是天津沿海南部海域的水交换能力下降严重,围填海之后其水体半交换周期延长可达200 d。渤海湾北部也有部分海域水交换周期延长达200 d。建议在进行围填海工程建设时,应将工程对水体交换能力的影响纳入考虑,避免因围填海工程因素造成的恶劣环境影响。  相似文献   

14.
Effect of River Discharge on Bay of Bengal Circulation   总被引:2,自引:1,他引:1  
The seasonal circulation and mixed layer depths in Bay of Bengal is modeled using the three-dimensional Princeton Ocean Model (POM). Along the coastal boundaries a higher resolution is accomplished using the curvilinear orthogonal grid. Model uses a free-surface and terrain following sigma coordinates. The initial climatological salinity and temperature fields for the model are derived from the World Ocean Atlas-2001(WOA01). The Model is forced with wind stress derived from COADS wind climatology. Bilinear interpolation is used to obtain the initial fields and wind stress to the required model specification. Using the seasonal fields and wind stress the model is integrated for simulating Bay of Bengal circulation. The numerical simulations on climatological scale for monsoon months were conducted to study the evolution of dynamics. The simulations bring out not only the typical characteristic features of fresh water plume along the coast but also intensification of the flow over the monsoon period. The increase in the fresh water flow found to affect only the western parts of the BoB. The opposing currents due to monsoon winds and southward flowing fresh water discharge (FWD) were also delineated. The model results show that the wind stress induced turbulence process is subdued in the presence of strong vertical salinity stratification due to the influence of FWD. The simulated mixed layer depths are in agreement with the reported analytical energy required for mixing values.  相似文献   

15.
基于无结构有限体积法海洋模式(FVCOM),建立了马尔代夫双重嵌套的水位、海流预报模式,并实现了业务化运行。利用三角网格提高重点区域(马尔代夫大桥及岛屿附近海域)的分辨率,最高网格分辨率达到45 m。垂向分层采用σ-s混合坐标的方式划分,分为31层,分别在表层和底层进行加密。采用GFS预报的风场、气压场和热通量结果制作模式表面强迫场文件。在开边界处与HYCOM预报结果进行嵌套,在斜压条件下,采用热启动的方式,业务化模拟了马尔代夫海域2020年的水位流场过程。结果表明,模式能够较好地再现计算海域内天文潮和综合水位的预报,模式预报的水位值与潮位站实测值非常接近。  相似文献   

16.
王彬  李峣  袁东亮 《海洋与湖沼》2013,44(6):1479-1485
本文采用普林斯顿大学海洋模式(POM)结合中国海军司令部发布的海图地形资料, 对西南黄海M2分潮进行了三维数值模拟。利用近岸4个验潮站水位资料和一组2008年夏季鲁南海槽中30m水深处潜标测流资料, 对模拟的潮汐和潮流结果进行了对比。模式模拟的M2分潮振幅与青岛、石臼所和吕泗这三个验潮站的实测资料符合良好; 但与连云港验潮站的实测振幅相比, 模拟振幅明显偏小, 推断主要原因是连云港港口实际水深值与海图地形中的水深值相差较大, 造成模拟结果的偏差。模拟的潮流结果与潜标测流资料在上层和中层较接近, 模拟的近底层潮流结构与实测资料相比存在较大偏差, 推断是由于模式的垂直混合系数误差造成的。使用该模式研究了西南黄海M2分潮对模式地形的敏感性, 发现采用海图地形数据和ETOPO5地形数据所模拟的西南黄海潮汐和潮流有显著不同。使用较平滑的ETOPO5地形数据所模拟的结果中, 西南黄海近岸海区M2分潮振幅偏小、相位偏大、潮流偏弱。研究表明, 鲁南海槽的存在增大了海州湾的潮汐振幅, 苏北浅滩对向南传播的潮波起到了阻挡作用。以上两个西南黄海近岸海区地形的重要特征在ETOPO5地形数据中没有被体现出来, 因此造成模拟误差。  相似文献   

17.
渤、黄、东海潮汐、潮流的数值模拟与研究   总被引:9,自引:4,他引:5  
基于FVCOM海洋数值模式,采用高分辨率的三角形网格,对渤、黄、东海的潮汐、潮流进行数值模拟,并通过比较120个沿岸验潮站和14个潮流观测站的实测与模拟结果进行模型验证,两者符合较好。根据模拟结果,给出了四个主要分潮的潮汐同潮图和5m层潮流最大流速及最大潮流同潮时分布。渤、黄、东海共有5个半日分潮和3个全日分潮的独立旋转潮波系统,且都呈逆时针方向旋转;半日潮流和全日潮流各有12个圆流点;在冲绳岛和奄美岛两侧的4个半日潮流圆流点分别呈对称分布,其中有3个为本文首次给出;在日本九州岛西侧还新给出2个全日潮流圆流点。有关它们的存在性需要实测资料的进一步检验。  相似文献   

18.
Although plankton bloom incidents in the upper Gulf of Thailand (UGoT) have been reported, no dynamic investigation of the phenomenon has been conducted. To address this need, a simple pelagic ecosystem model coupled with the Princeton Ocean Model (POM) was employed to investigate seasonal variations in surface chlorophyll-a (chl-a) distributions to clarify phytoplankton dynamics in this area. The results revealed patterns of seasonal chl-a distribution that correspond to local wind, water movement and river discharge. High chl-a patchiness was found to be concentrated near the western coast following westward circulation near the northern coast developed during the northeast monsoon. During the southwest monsoon high concentrations were observed around the northeastern coast due to eastward flow. The simulated results could explain the seasonal shifting of phytoplankton blooms, which typically arise along the western and eastern coasts during the northeast and the southwest monsoons, respectively. Sensitivity analyses of simulated chl-a distributions demonstrate that water stability, including wind-induced vertical currents and mixing, plays significant roles in controlling phytoplankton growth. Nutrients in the water column will not stimulate strong plankton blooms unless upwelling develops or vertical diffusivity is low. This finding suggests an alternative aspect of the mechanism of phytoplankton bloom in this region.  相似文献   

19.
利用三维高分辨率有限体积的近海海域模型FVCOM来分析2001年秋季期间风作用对坦帕湾区域盐度平衡的影响。为了区分风的影响,分别设计了两个实验:一个由潮汐和河流作为驱动,另一个由潮汐、河流以及风场共同驱动。结论如下:首先,风作用会使盐度产生变化,能够明显地使坦帕湾内的盐度增加,并导致水平和垂直方向上盐度梯度的减少;随后,本文分析了坦帕湾区域内的盐度平衡,主要的盐度平衡来自于全部(水平和垂直方向上)平流的盐度流量分歧以及除去海峡底部的垂直方向上盐度流量分歧;最后,对由风引起的盐度变化进一步进行分析,结果表明风作用不能改变盐度平衡地位的相对重要性,由风引起的盐度平衡改变高度依靠于特殊的地形,除此之外,全部平流盐度流量分歧和垂直散布盐度通量分歧能够抵消,并且两者都远大于水平散步盐度流量分歧。  相似文献   

20.
The results obtained from an Ocean General Circulation Model (OGCM), the Modular Ocean Model 2.2, forced with the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data, and observational data have been utilized to document the climatological seasonal cycle of the upper ocean response in the Tropical Indian Ocean. We address the various roles played by the net surface heat flux and the local and remote ocean dynamics for the seasonal variation of near-surface heat budget in the Tropical Indian Ocean. The investigation is based in seven selected boxes in the Arabian Sea, Bay of Bengal and the Equatorial Indian Ocean. The changes of basin-wide heat budget of ocean process in the Arabian Sea and the Western Equatorial Indian Ocean show an annual cycle, whereas those in the Bay of Bengal and the Eastern Equatorial Indian Ocean show a semi-annual cycle. The time tendency of heat budget in the Arabian Sea depends on both the net surface heat flux and ocean dynamics while on the other hand, that in the Bay of Bengal depends mainly on the net surface flux. However, it has been found that the changes of heat budget are very different between western and eastern regional sea areas in the Arabian Sea and the Bay of Bengal, respectively. This difference depends on seasonal variations of the different local wind forcing and the different ocean dynamics associated with ocean eddies and Kelvin and Rossby waves in each regional sea areas. We also discuss the comparison and the connection for the seasonal variation of near-surface heat budget among their regional sea areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号