首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We apply the logic of clinical epidemiological studies to quantify the accuracy of mapping sinkholes by ALSM in the 750 km2 Pinellas County. By such studies, a new diagnostic procedure is tested by comparing the diagnoses in a clinical trial to diagnoses on the same patients from a more reliable, but more elaborate and expensive procedure (“gold standard” in epidemiological context). A relatively undeveloped, 65 km2 focus area where we have aerial photographs that are effectively contemporaneous with the ALSM flights serves as the “clinical trial”. The xy-locations in the focus area are the “patients” in the trial. The “diagnostic test” for having “sinkhole disease” is inclusion in a database of sinkhole polygons delimited by ALSM contours (“ALSM-alone”), as detailed in Part 1. The standard of comparison (“gold standard” would be an overstatement in the absence of geophysical testing) is inclusion in a database of sinkhole outlines derived by best judgment of conjunctive interpretation of ALSM and aerial photography. GIS intersections that indicate the sensitivity and specificity of the test (ALSM-alone) are 43 and 98.3%, respectively, and, in the focus area where the prevalence of “sinkhole disease” is 4.7%, the positive and negative predictive values are 55.5 and 97.2%, respectively. Over much of the rest of the county, where only the test can be applied, the prevalence of sinkholes is sufficiently small that it cannot be determined to be any different from zero given the paucity of interpreted sinkholes (positive diagnoses) and the low specificity of the test method. The conclusion, therefore, is that contemporaneous aerial photography is essential to compile an ALSM-derived database that aims to state that the given xy-points lay inside or outside of topographic depressions in the covered karst of west-central Florida.  相似文献   

2.
Flash flood forecasting of catchment systems is one of the challenges especially in the arid ungauged basins. This study is attempted to estimate the relationship between rainfall and runoff and also to provide flash flood hazard warnings for ungauged basins based on the hydrological characteristics using geographic information system (GIS). Morphometric characteristics of drainage basins provide a means for describing the hydrological behavior of a basin. The study examined the morphometric parameters of Wadi Rabigh with emphasis on its implication for hydrologic processes through the integration analysis between morphometric parameters and GIS techniques. Data for this study were obtained from ASTER data for digital elevation model (DEM) with 30-m resolution, topographic map (1:50,000), and geological maps (1,250,000) which were subject to field confirmation. About 36 morphometric parameters were measured and calculated, and interlinked to produce nine effective parameters for the evaluation of the flash flood hazard degree of the study area. Based on nine effective morphometric parameters that directly influence on the hydrologic behavior of the Wadi through time of concentration, the flash flood hazard of the Rabigh basin and its subbasins was identified and classified into three groups (High, medium, and low hazard degree). The present work proved that the physiographic features of drainage basin contribute to the possibility of a flash flood hazard evaluation for any particular drainage area. The study provides details on the flash flood prone subbasins and the mitigation measures. This study also helps to plan rainwater harvesting and watershed management in the flash flood alert zones. Based on two historical data events of rainfall and the corresponding maximum flow rate, morphometric parameters and Stormwater Management and Design Aid software (SMADA 6), it could be to generate the hydrograph of Wadi Rabigh basin. As a result of the model applied to Wadi Rabigh basin, a rainfall event of a total of 22 mm with a duration of 5 h at the station nearby the study area, which has an exceedance probability of 50 % and return period around 2 years, produces a discharge volume of 15.2?×?106 m3 at the delta, outlet of the basin, as 12.5 mm of the rainfall infiltrates (recharge).  相似文献   

3.
The extraction of the water hydrographical pattern and watershed and subwatershed boundary is very important for many types of study. In Jordan the topographic map scale 1:25,000 produced at the Royal Jordanian Geographic Center is considered the most important source of contour lines and drainage pattern; therefore, it is imperative to estimate the accuracy of these types of data extracted from the previous topographic maps. In this project we aim to extract the hydrographical pattern of the Humrat Assahn basin in two methods: (1) an orthophoto based on aerial photographs using Socetset as photogrammetric software and (2) topographic maps at scale 1:25,000. A precise Digital Terrain Model (DTM) was built from stereoscopic aerial photographs using Socetset software. As we know, the quality of DTM is imperative to assure precise results and depends on the method of creation of this DTM besides other factors. A complete data base for the necessary information for achieving this objective was built. The obtained results were evaluated using GPS points and photo-interpretation. The results show that the drainage pattern extracted from DTM using photogrametric software was very accurate; meanwhile, the accuracy of the drainage pattern extracted from topographic maps has some flaws.  相似文献   

4.
An evaluation of morphometric parameters of two drainage networks derived from different sources was done to determine the influence of sub-basins to flooding on the main channel in the Havran River basin (Balıkesir-Turkey). Drainage networks for the sub-basins were derived from both topographic maps scaled 1:25.000 and a 10-m resolution digital elevation model (DEM) using geographic information systems (GIS). Blue lines, representing fluvial channels on the topographic maps were accepted as a drainage network, which does not depict all exterior links in the basin. The second drainage network was extracted from the DEM using minimum accumulation area threshold to include all exterior links. Morphometric parameters were applied to the two types of drainage networks at sub-basin levels. These parameters were used to assess the influence of the sub-basins on the main channel with respect to flooding. The results show that the drainage network of sub-basin 4—where a dam was constructed on its outlet to mitigate potential floods—has a lower influence morphometrically to produce probable floods on the main channel than that of sub-basins 1, 3, and 5. The construction of the dam will help reduce flooding on the main channel from sub-basin 4 but it will not prevent potential flooding from sub-basin 1, 3 and 5, which join the main channel downstream of sub-basin 4. Therefore, flood mitigation efforts should be considered in order to protect the settlement and agricultural lands on the floodplain downstream of the dam. In order to increase our understanding of flood hazards, and to determine appropriate mitigation solutions, drainage morphometry research should be included as an essential component to hydrologic studies.  相似文献   

5.
During the Mitch Hurricane event (October 1998), severe floods occurred in the village of La Trinidad (Departamento de Estelí, NW Nicaragua), which spreads at the margin of La Trinidad river. As a consequence, the need for hazard assessment and land use planning to reduce the effects of these natural processes arose. Nicaragua is a developing country, which means that there is a scarcity of good quality data on which to base these hazard assessments (i.e., lack of detailed topographic maps, lack of meteorological and discharge data series). Therefore, the main objective of the present work was to generate a flood hazard map of La Trinidad by means of a simple method, with a resulting map easy to understand and to use by the municipality for land use planning. There is no topographic map of the area at a more detailed scale than 1:50,000. So the main document that supports all the data and on which the final hazard map was based is the orthophotograph at 1:5,000 scale (generated from vertical aerial photographs taken in 2000). The method used was based on classical interpretation of vertical aerial photographs (pre Mitch and a post Mitch event), detailed field work, inquiries among the population and analysis of the main pattern of storms occurring in the area. All these data allowed the reconstruction of different extensions and water levels corresponding to events of different frequency and magnitude, and the qualitative association of them to three hazard levels by means of energy and frequency. The use of orthophotographs of 1:5,000 proved to be very useful both for the development of the work and for the presentation of the final map, because they are very easily understandable for people not trained in the interpretation of topographic maps.  相似文献   

6.
Airphotos have been used for topographic survey since the Twenties. The “European Space Agency” (ESA), the “Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt” (DFVLR) and “Carl Zeiss” have modified this successful technique for spacecraft and recently have tested the system over four continents. Each of these satellite photos covers a region of 189×189 km to the scale of 1∶800000 and may be enlarged to 1∶250000 or 1∶100000. Between the altitudes of 200 and 300 km, mapmaking or-revision seems to be economic in zones or in countries, where existing maps are of minor quality or outdated. In this paper, examples from deserts and semideserts in the Sudan are presented.  相似文献   

7.
Floods are regular feature in rapidly urbanizing Dhaka, the capital city of Bangladesh. It is observed that about 60% of the eastern Dhaka regularly goes under water every year in monsoon due to lack of flood protection. Experience gathered from past devastating floods shows that, besides structural approach, non-structural approach such as flood hazard map and risk map is effective tools for reducing flood damages. In this paper, assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972–2004). As the topography of the area has been considerably changed due to rapid land-filling by land developers which was observed in recent satellite image (DigitalGlobe image; Date of imagery: 7th March 2007), the acquired DEM data were modified to represent the current topography. The inundation simulation was conducted using hydrodynamic program HEC-RAS for flood of 100-year return period. The simulation has revealed that the maximum depth is 7.55 m at the southeastern part of that area and affected area is more than 50%. A flood hazard map was prepared according to the simulation result using the software ArcGIS. Finally, to assess the flood risk of that area, a risk map was prepared where risk was defined as the product of hazard (i.e., depth of inundation) and vulnerability (i.e., the exposure of people or assets to flood). These two maps should be helpful in raising awareness of inhabitants and in assigning priority for land development and for emergency preparedness including aid and relief operations in high-risk areas in the future.  相似文献   

8.
In contrast to dramatic flow regime changes by less frequent large-scale volcanic eruptions, those caused by more frequent small-scale processes in volcanic landscapes may also drastically change the direction and dynamics of flow in a drainage system formed solely by fluvial processes. During such periods of channel morphology change, it is necessary to frequently update channel flow parameters to assess preventive measures for civil protection purposes. Often aerial photography is impracticable, since parts of the channels are covered by dense vegetation, while total station and laser topographic surveys are often too slow and costly, particularly during a high frequency of events. This article introduces and validates a new methodology for updating the representation of channel morphology in Digital Elevation Models (DEM) used specifically for assessing the dangers of frequently occurring lahars along gorges in volcanic landscapes during eruptive and non-eruptive periods. The updating of channel cross-sections was achieved by inserting more detailed representative profiles of homogeneous channel sectors in DEMs derived from existing less detailed topographic maps. The channel profiles were surveyed along the thalweg in equidistant points according to Universal Transverse Mercator (UTM) (x,y) coordinates and elevation derived from the existing DEM. The proposed technique was applied at Tenenepanco-Huiloac Gorge on Popocatépetl volcano, Mexico, in an area affected by major lahars during the volcano’s most recent eruptive period from 1994 to 2005. The proposed method can reduce the cost and person-hours of a regular channel topographic survey dramatically and the enhanced DEM can determine volume parameters and flood zones associated with the 1 July 1997 and 21 January 2001 lahars, respectively. In addition, the updated DEM with better channel representation allowed a more realistic fluid flow and lahar simulation with the process-based TITAN2D model.  相似文献   

9.
The morphometric analysis of river basins represents a simple procedure to describe hydrologic and geomorphic processes operating on a basin scale. A morphometric analysis was carried out to evaluate the drainage characteristics of two adjoining, mountain river basins of the southern Western Ghats, India, Muthirapuzha River Basin (MRB) in the western slopes and Pambar River Basin (PRB) in the eastern slopes. The basins, forming a part of the Proterozoic, high-grade, Southern Granulite Terrain of the Peninsular India, are carved out of a terrain dominantly made of granite- and hornblende-biotite gneisses. The Western Ghats, forming the basin divide, significantly influences the regional climate (i.e., humid climate in MRB, while semi-arid in PRB). The Survey of India topographic maps (1:50,000) and Shuttle Radar Topographic Mission digital elevation data were used as the base for delineation and analysis. Both river basins are of 6th order and comparable in basin geometry. The drainage patterns and linear alignment of the drainage networks suggest the influence of structural elements. The Rb of either basins failed to highlight the structural controls on drainage organization, which might be a result of the elongated basin shape. The irregular trends in Rb between various stream orders suggest the influence of geology and relief on drainage branching. The Dd values designate the basins as moderate- to well-drained with lower infiltration rates. The overall increasing trend of Rl between successive stream orders suggests a geomorphic maturity of either basins and confirmed by the characteristic I hyp values. The Re values imply an elongate shape for both MRB and PRB and subsequently lower vulnerability to flash floods and hence, easier flood management. The relatively higher Rr of PRB is an indicative of comparatively steeply sloping terrain and consequently higher intensity of erosion processes. Further, the derivatives of digital elevation data (slope, aspect, topographic wetness index, and stream power index), showing significant differences between MRB and PRB, are useful in soil conservation plans. The study highlighted the variation in morphometric parameters with respect to the dissimilarities in topography and climate.  相似文献   

10.
This work focuses on the exploitation of very high-resolution (VHR) satellite imagery coupled with multi-criteria analysis (MCA) to produce flood hazard maps. The methodology was tested over a portion of the Yialias river watershed basin (Nicosia, Cyprus). The MCA methodology was performed selecting five flood-conditioning factors: slope, distance to channels, drainage texture, geology and land cover. Among MCA methods, the analytic hierarchy process technique was chosen to derive the weight of each criterion in the computation of the flood hazard index (FHI). The required information layers were obtained by processing a VHR GeoEye-1 image and a digital elevation model. The satellite image was classified using an object-based technique to extract land use/cover data, while GIS geoprocessing of the DEM provided slope, stream network and drainage texture data. Using the FHI, the study area was finally classified into seven hazard categories ranging from very low to very high in order to generate an easily readable map. The hazard seems to be severe, in particular, in some urban areas, where extensive anthropogenic interventions can be observed. This work confirms the benefits of using remote sensing data coupled with MCA approach to provide fast and cost-effective information concerning the hazard assessment, especially when reliable data are not available.  相似文献   

11.
This study presents the results of both field and laboratory tests that have been undertaken to assess liquefaction susceptibilities of the soils in Kütahya city, located in the well-known seismically active fault zone. Liquefaction potentials of the sub-surface materials at Kütahya city were estimated by using the geological aspect and geotechnical methods such as SPT method of field testing. And, the data obtained have been mapped according to susceptibility and hazard. The susceptibility map indicated “liquefable” and “marginally liquefable” areas in alluvium, and “non-liquefable” areas in Neogene unit for the magnitude of earthquake of M=6.5; whereas, liquefaction hazard map produced by using of liquefaction potential index showed the severity categories from “very low” to “high.” However, a large area in the study area is prone to liquefy according to liquefaction susceptibility map; the large parts of the liquefable horizon are mapped as “low” class of severity by the use of the liquefaction potential index. It can be said that hazard mapping of liquefaction for a given site is crucial than producing liquefaction susceptibility map for estimating the severity. Both the susceptibility and hazard maps should be produced and correlated with each other for planning in an engineering point of view.  相似文献   

12.
It has been known that ground motion amplitude will be amplified at mountaintops; however, such topographic effects are not included in conventional landslide hazard models. In this study, a modified procedure that considers the topographic effects is proposed to analyze the seismic landslide hazard. The topographic effect is estimated by back analysis. First, a 3D dynamic numerical model with irregular topography is constructed. The theoretical topographic amplification factors are derived from the dynamic numerical model. The ground motion record is regarded as the reference motion in the plane area. By combining the topographic amplification factors with the reference motions, the amplified acceleration time history and amplified seismic intensity parameters are obtained. Newmark’s displacement model is chosen to perform the seismic landslide hazard analysis. By combining the regression equation and the seismic parameter of peak ground acceleration and Arias intensity, the Newmark’s displacement distribution is generated. Subsequently, the calculated Newmark’s displacement maps are transformed to the hazard maps. The landslide hazard maps of the 99 Peaks region, Central Taiwan are evaluated. The actual landslide inventory maps triggered by the 21 September 1999, Chi-Chi earthquake are compared with the calculated hazard maps. Relative to the conventional procedure, the results show that the proposed procedures, which include the topographic effect can obtain a better result for seismic landslide hazard analysis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
For landslide susceptibility mapping, this study applied, verified and compared the Bayesian probability model, the weights-of-evidence to Panaon Island, Philippines, using a geographic information system. Landslide locations were identified in the study area from the interpretation of aerial photographs and field surveys, and a spatial database was extracted from SRTM (Shuttle Radar Topographic Mission) DEM (Digital Elevation Model) imagery, aerial photograph, topographic map, and geological map. The factors that influence landslide occurrence, such as slope, aspect, curvature, topographic wetness index and stream power index of topography, were calculated from SRTM imagery. Distance from drainage was extracted from topographic database. Lithology and distance from fault were extracted and calculated from geological database. Terrain mapping unit was classified from aerial photographs. The spatial association between the factors and the landslides was calculated as the contrast values, W + and W using the weights-of-evidence model. Tests of conditional independence were performed for the selection of the factors, allowing the large number of combinations of factors to be analyzed. For each factor rating, the contrast values, W + and W were overlaid for landslide susceptibility mapping. The results of the analysis showed that contrast rating (78.60%) for each factor’s multiclass had better accuracy of 5.90% than combinations of factor assigned to binary class with W + and W (72.70%).  相似文献   

14.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

15.
In fluvial systems, the relationship between a dominant variable (e.g. flood pulse) and its dependent ones (e.g. riparian vegetation) is called connectivity. This paper analyzes the connectivity elements and processes controlling riparian vegetation for a reach of the upper Paraná River (Brazil) and estimates the future changes in channel-vegetation relationship as a consequence of the managing of a large dam. The studied reach is situated 30 km downstream from the Porto Primavera Dam (construction finished in 1999). Through aerial photography (1:25,000, 1996), RGB-CBERS satellite imagery and a previous field botany survey it was possible to elaborate a map with the five major morpho-vegetation units: 1) Tree-dominated natural levee, 2) Shrubby upper floodplain, 3) Shrub-herbaceous mid floodplain, 4) Grass-herbaceous lower floodplain and 5) Shrub-herbaceous flood runoff channel units. By use of a detailed topographic survey and statistical tools each morpho-vegetation type was analyzed according to its connectivity parameters (frequency, recurrence, permanence, seasonality, potamophase, limnophase and FCQ index) in the pre- and post-dam closure periods of the historical series. Data showed that most of the morpho-vegetation units were predicted to present changes in connectivity parameters values after dam closing and the new regime could affect, in different intensity, the river ecology and particularly the riparian vegetation. The methods used in this study can be useful for dam impact studies in other South American tropical rivers.  相似文献   

16.
Flash floods are the most common type of natural hazards that cause loss of life and massive damage to economic activities. During the last few decades, their impact increased due to rapid urbanization and settlement in downstream areas, which are desirable place for development. Wadi Asyuti, much like other wadis in the Eastern Desert of Egypt, is prone to flash flood problems. Analysis and interpretation of microwave remotely sensed data obtained from the Shuttle Radar Topography Mission (SRTM) and Tropical Rainfall Measuring Mission (TRMM) data using GIS techniques provided information on physical characteristics of catchments and rainfall zones. These data play a crucial role in mapping flash flood potentials and predicting hydrologic conditions in space and time. In order to delineate flash flood potentials in Wadi Asyuti basin, several morphometric parameters that tend to promote higher flood peak and runoff, including drainage characteristics, basin relief, texture, and geometry were computed, ranked, and combined using several approaches. The resulting flash flood potential maps, categorized the sub-basins into five classes, ranging from very low to very high flood potentials. In addition, integrating the spatially distributed drainage density, rainfall intensity, and slope gradient further highlighted areas of potential flooding within the Wadi Asyuti basin. Processing of recent Landsat-8 imagery acquired on March 15, 2014, validated the flood potential maps and offered an opportunity to measure the extent (200–900 m in width) of the flooding zone within the flash flood event on March 9, 2014, as well as revealed vulnerable areas of social and economic activities. These results demonstrated that excessive rainfall intensity in areas of higher topographic relief, steep slope, and drainage density are the major causes of flash floods. Furthermore, integration of remote sensing data and GIS techniques allowed mapping flood-prone areas in a fast and cost-effective to help decision makers in preventing flood hazards in the future.  相似文献   

17.
Flood risk perception in lands “protected” by 100-year levees   总被引:2,自引:1,他引:1  
Ludy  Jessica  Kondolf  G. Matt 《Natural Hazards》2012,61(2):829-842
Under the US National Flood Insurance Program, lands behind levees certified as protecting against the 100-year flood are considered to be out of the officially recognized “floodplain.” However, such lands are still vulnerable to flooding that exceeds the design capacity of the levees—known as residual risk. In the Sacramento-San Joaquin Delta of California, we encounter the curious situation that lands below sea level are considered not “floodplain” and open to residential and commercial development because they are “protected” by levees. Residents are not informed that they are at risk from floods, because officially they are not in the floodplain. We surveyed residents of a recently constructed subdivision in Stockton, California, to assess their awareness of their risk of flooding. Median household income in the development was $80,000, 70% of respondents had a 4-year university degree or higher, and the development was ethnically mixed. Despite the levels of education and income, they did not understand the risk of being flooded. Given that literature shows informed individuals are more likely to take preventative measures than uninformed individuals, our results have important implications for flood policy. Climate-change-induced sea-level rise exacerbates the problems posed by increasing urbanization and aging infrastructure, increasing the threat of catastrophic flooding in the California Delta and in flood-prone areas worldwide.  相似文献   

18.
A Probabilistic Modelling System for Assessing Flood Risks   总被引:4,自引:2,他引:4  
In order to be economically viable, flood disaster mitigation should be based on a comprehensive assessment of the flood risk. This requires the estimation of the flood hazard (i.e. runoff and associated probability) and the consequences of flooding (i.e. property damage, damage to persons, etc.). Within the “German Research Network Natural Disasters” project, the working group on “Flood Risk Analysis” investigated the complete flood disaster chain from the triggering event down to its various consequences. The working group developed complex, spatially distributed models representing the relevant meteorological, hydrological, hydraulic, geo-technical, and socio-economic processes. In order to assess flood risk these complex deterministic models were complemented by a simple probabilistic model. The latter model consists of modules each representing one process of the flood disaster chain. Each module is a simple parameterisation of the corresponding more complex model. This ensures that the two approaches (simple probabilistic and complex deterministic) are compatible at all steps of the flood disaster chain. The simple stochastic approach allows a large number of simulation runs in a Monte Carlo framework thus providing the basis for a probabilistic risk assessment. Using the proposed model, the flood risk including an estimation of the flood damage was quantified for an example area at the river Rhine. Additionally, the important influence of upstream levee breaches on the flood risk at the lower reaches was assessed. The proposed model concept is useful for the integrated assessment of flood risks in flood prone areas, for cost-benefit assessment and risk-based design of flood protection measures and as a decision support tool for flood management.  相似文献   

19.
Basin morphometric parameters play an important role in hydrological processes, as they largely control a catchment’s hydrologic response. Their analysis becomes even more significant when studying runoff reaction to intense rainfall, especially in the case of ungauged, flash flood prone basins. Unit hydrographs are one of the useful tools for estimating runoff when instrumental data are inadequate. In this work, instantaneous unit hydrographs based on the time-area method have been compiled along the drainage networks of two small rural catchments in Greece, situated approximately 25 km northeast of its capital, Athens. The two catchments drained by ephemeral torrents, namely Rapentosa and Charadros, have been subject to flash flooding during the last decades, which caused extensive damages at the local small towns of Marathon and Vranas. Hydrograph compilation in numerous locations along the catchments’ drainage networks directly reflected the runoff conditions across each basin against a given rainfall. This gave a holistic assessment of their hydrologic response, allowing the detection of areas where peak flow rates were elevated and therefore, there was higher flood potential. The resulting flood hazard zonation showed good correlation with locations of damages induced by past flood events, indicating that the method can successfully predict flood hazard spatial distribution. The whole methodology was based on geographic information software due to its excellent capabilities on storing and processing spatial data.  相似文献   

20.
Landslides are among the most costly and damaging natural hazards in mountainous regions, triggered mainly under the influence of earthquakes and/or rainfall. In the present study, Landslide Hazard Zonation (LHZ) of Dikrong river basin of Arunachal Pradesh was carried out using Remote Sensing and Geographic Information System (GIS). Various thematic layers namely slope, photo-lineament buffer, thrust buffer, relative relief map, geology and land use / land cover map were generated using remote sensing data and GIS. The weighting-rating system based on the relative importance of various causative factors as derived from remotely sensed data and other thematic maps were used for the LHZ. The different classes of thematic layers were assigned the corresponding rating value as attribute information in the GIS and an “attribute map” was generated for each data layer. Each class within a thematic layer was assigned an ordinal rating from 0 to 9. Summation of these attribute maps were then multiplied by the corresponding weights to yield the Landslide Hazard Index (LHI) for each cell. Using trial and error method the weight-rating values have been re-adjusted. The LHI threshold values used were: 142, 165, 189 and 216. A LHZ map was prepared showing the five zones, namely “very low hazard”, “low hazard”, “moderate hazard”, “high hazard” and “very high hazard” by using the “slicing” operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号