首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Radiative Processes in the Stable Boundary Layer: Part I. Radiative Aspects   总被引:1,自引:0,他引:1  
The structure of the radiatively dominated stable boundary layer is analysed using idealized calculations at high vertical and spectral resolution. The temperature profile of a nocturnal radiative boundary layer, developing after the evening transition, is found to be well described in terms of radiative cooling to the surface, although radiative exchanges within the atmosphere become increasingly important with time. The treatment of non-black surfaces is discussed in some detail and it is shown that the effect of reducing the surface emissivity is to decrease rather than to increase the radiative cooling rate in the surface layer. It is also argued that an accurate assessment of the impact of non-black surfaces requires careful attention to the spectral and directional characteristics of the surface emissivity. A polar nocturnal boundary layer, developing above snow-covered ground, is simulated and found to reach a slowly evolving state characterized by a strong radiative divergence near the surface that is comparable to observed values. Radiative boundary layers are characterized by large temperature gradients near the surface. An erratum to this article can be found at  相似文献   

2.
The contribution of radiative and turbulent processes to nocturnal atmospheric cooling has been studied using the experimental data of the ECLATS experiment which took place in the African Sahel; the radiative and turbulent fluxes were determined taking thermal advection into account. The turbulent cooling rate is predominant; it decreases strongly with altitude at the beginning of the night, which is the main cause of inversion formation.  相似文献   

3.
利用地面气象观测资料、高空探测资料、NCEP再分析资料、芜湖市边界层风廓线雷达资料和高速公路气象观测站资料,分析了2012年3月6日安徽省沿长江东部大范围雾天气过程形成的环流背景及雾生消的物理条件。结果表明:安徽沿江东部地区此次春季大范围雾的性质为辐射雾,雾发生时雾区上空为西到西南风为主,无明显冷空气影响,地面为高压控制的均压场,有利于雾的生成和维持。由雾生消的物理条件可知,近地面水汽条件较好和长波辐射降温造成的水汽凝结是此次大范围雾形成的重要原因。地面辐射降温形成的近地面逆温层有利于雾的维持,且随着近地面逆温层的抬升,雾层变厚并发展。低空的逆温层则形成稳定的层结,阻止水汽向上传输。近地面风速大小合适,风垂直切变小,低层有湍流,中层无明显上升运动,构成雾形成的有利动力条件;而湿层变厚又阻止了水汽向高层交换,有利于雾的生成和维持。日出后,太阳辐射增强,有利于雾发生和维持的地面辐射降温、逆温和动力条件逐渐消失,雾逐渐消散。  相似文献   

4.
A Doppler sodar system controlled by microcomputer is described in this paper. The sodar was usedto detect the vertical distribution of wind and temperature stratification in the atmospheric boundary layer.The detecting results show that at night the vertical distribution of wind is very complicated, which can appearas a structure of two or three layers. In nocturnal atmospheric boundary layer sometimes there exists verythin layer in multi-layer inversion and it can be retained for a long time.  相似文献   

5.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   

6.
Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understanding Arctic climate and its present and future changes. Here, we show how the formation of Arctic air masses leads to the emergence of a cloudy and a clear state of the Arctic winter boundary layer. In the cloudy state, cloud liquid water is present, little to no surface radiative cooling occurs and inversions are elevated and relatively weak, whereas surface radiative cooling leads to strong surface-based temperature inversions in the clear state. Comparing model output to observations, we find that most climate models lack a realistic representation of the cloudy state. An idealised single-column model experiment of the formation of Arctic air reveals that this bias is linked to inadequate mixed-phase cloud microphysics, whereas turbulent and conductive heat fluxes control the strength of inversions within the clear state.  相似文献   

7.
Stratiform Cloud—Inversion Characterization During the Arctic Melt Season   总被引:1,自引:1,他引:0  
Data collected during July and August from the Arctic Ocean Experiment 2001 illustrated a common occurrence of specific-humidity (q) inversions, where moisture increases with height, coinciding with temperature inversions in the central Arctic boundary layer and lower troposphere. Low-level stratiform clouds and their relationship to temperature inversions are examined using radiosonde data and data from a suite of remote sensing instrumentation. Two low-level cloud regimes are identified: the canonical case of stratiform clouds, where the cloud tops are capped by the temperature inversion base (CCI—Clouds Capped by Inversion) and clouds where the cloud tops were found well inside the inversion (CII—Clouds Inside Inversion). The latter case was found to occur more than twice as frequently than the former. The characteristic of the temperature inversion is shown to have an influence on the cloud regime that was supported. Statistical analyses of the cloud regimes using remote sensing instruments suggest that CCI cases tend to be dominated by single-phase liquid cloud droplets; radiative cooling at the cloud top limits the vertical extent of such clouds to the inversion base height. The CII cases, on the other hand, display characteristics that can be divided into two situations—(1) clouds that only slightly penetrate the temperature inversion and exhibit a microphysical signal similar to CCI cases, or (2) clouds that extend higher into the inversion and show evidence of a mixed-phase cloud structure. An important interplay between the mixed-phase structure and an increased potential for turbulent mixing across the inversion base appears to support the lifetime of CII cases existing within the inversion layer.  相似文献   

8.
The interaction of turbulent and radiative transfer applied to a number of plausible atmospheric situations in the surface layer under the stably stratified condition is discussed.The calculated results show that the long-wave radiative flux has a great influence upon the thermal structure of the surface layer, and that it usually acts in such a way as to weaken the thickness of the constant turbulent heat flux layer. In the case of low wind velocities and strongly stable stratifications, the thickness of the turbulent heat flux layer will become very thin and/or inexistent.  相似文献   

9.
The interaction between radiation and turbulence in the stable boundary layer over land is explored using an idealized model, with a focus on the surface layer after the evening transition. It is shown that finer vertical resolution is required in transitional boundary layers than in developed ones. In very light winds radiative cooling determines the temperature profile, even if similarity functions without a critical Richardson number are used; standard surface similarity theory applied over thick layers then yields poor forecasts of near-surface air temperatures. These points are illustrated with field data. Simulations of the developing nocturnal boundary layer are used to explore the wider role of radiation. Comparatively, radiation is less significant within the developed stable boundary layer than during the transition; although, as previous studies have found, it remains important towards the top of the stable layer and in the residual layer. Near the ground, reducing the surface emissivity below one is found to yield modest relative radiative warming rather than intense cooling, which reduces the potential importance of radiation in the developed surface layer. The profile of the radiative heating rate may be strongly dependent on other processes, leading to quite varied behaviour.  相似文献   

10.
Observations from an instrumented aircraft are used to study the small-scale structure of turbulence and convection in well-mixed boundary layers and the erosion processes in the nocturnally-formed inversions above them. The ways in which turbulence statistics for temperature, humidity and vertical velocity scale with height in the mixed layer are compared with the results of a three-dimensional model by Deardorff (1974a, b), and agreement is found in many aspects. Conditional sampling enables the statistics of thermals and their environment to be considered separately and, in particular, shows that the mode of the vertical velocity in thermals markedly decreases with height in the upper half of the mixed layer. Thermals may be recognized equally readily by either their excess of temperature or humidity. Transfers of heat and moisture through the nocturnal inversions influence the structure of the upper region of the mixed layer and there is strong evidence that these transfer processes are turbulent and not organized on scales similar to convective thermals.  相似文献   

11.
本文利用中尺度数值预报模式(WRF)并采用谱逼近方法,对2021年冬奥测试赛期间的一次冷湖过程进行模拟研究,探究了冷湖发展前后风温场的垂直变化规律,揭示了冷湖形成及消亡的具体原因。研究结果表明,静稳的天气形势是冷湖过程维持及发展的大背景条件。冷湖发展期间,逆温层由上至下迅速建立,谷底出现偏东—东南向的冷径流。受重力下坡风的影响,冷空气不断向谷底堆积,冷湖深度增加。日出后,越山的系统风重新建立,逆温层从底部消蚀,冷湖结构破坏。夜间的强辐射冷却作用是冷湖形成的主要原因之一。辐射冷却强度的差异会引起冷湖降温幅度的差异,后半夜辐射冷却作用的突然加强为冷湖中后期的维持及发展创造有利条件。通过分析冷湖发生前后位温廓线、摩擦速度及边界层高度随时间的演变,均可印证湍流活动的发展是逆温消散、冷湖结构破坏的重要影响因素。  相似文献   

12.
The vertical mesoscale flux in the nocturnal boundary layer is generally considered to be difficult to estimate because of the small mesoscale vertical velocities and the large random variation of the mesoscale fluxes. However, the mesoscale vertical flux of heat, computed from FLOSSII data, varies quasi-systematically with height, stability and time scale. Such systematic variation requires correction for sonic misalignment and averaging over a large quantity of data. The relation of the mesoscale heat flux to the vertical structure of the nocturnal boundary layer is examined. For the most common conditions, the vertical convergence of the mesoscale heat flux acts to reduce the nocturnal cooling rate. Important uncertainties are discussed as well as the need for improved observations.  相似文献   

13.
In this work, the thermic structure of the atmospheric boundary layer is analyzed by means of direct measurements with radiosonde equipment, remote exploration with a three-monostatic Doppler sodar, and a boundary layer model of order one-and-a-half. Intercomparisons of radiosonde data, sodar data, and model results are made through the study of radiative nocturnal inversion, subsidence inversion, development and height of the mixing layer, and calculus of the temperature structure parameter. The ability of sodar to find the mixing layer height and to detect stable layers is enhanced when these layers are low enough.  相似文献   

14.
15.
We report on observed nocturnal profiles, in which an inversion layer is located at the core of a low-level jet, bounded between two well-mixed layers. High-resolution vertical profiles were collected during a field campaign in a small plain in the Israeli desert (Negev), distant 100 km from the eastern shore of the Mediterranean Sea. During the evening hours, the synoptic flow, superposed on the late sea breeze, forms a low-level jet characterized by a maximum wind speed of 12 m s −1 at an altitude of 150 m above the ground. The strong wind shear at the jet maximum generates downward heat fluxes that act against the nocturnal ground cooling. As a result, the typical ground-based nocturnal inversion is “elevated” towards the jet centre, hence a typical early morning thermal profile is observed a few hours after sunset. Since the jet is advected into the region, its formation does not depend on the presence of a surface nocturnal inversion layer to decouple the jet from surface friction. On the contrary, here the advected low-level jet acts to hinder the formation of such an inversion. These unusual temperature and wind profiles are expected to affect near-ground dispersion processes.  相似文献   

16.
Large-eddy simulation in the GABLS3 intercomparison is concerned with the developed stable boundary layer (SBL) and the ensuing morning transition. The impact of radiative transfer on simulations of this case is assessed. By the time of the reversal of the surface buoyancy flux, a modest reduction of the lapse rate in the developed SBL is apparent in simulations that include longwave radiation. Subsequently, with radiation, the developing mixed layer grows significantly more quickly, so that four hours after the transition the mixed layer is roughly 40 % deeper; the resulting profiles of potential temperature and specific humidity are in better agreement with observations. The inclusion of radiation does not substantively alter the shape of turbulent spectra, but it does indirectly reduce the variance of temperature fluctuations in the mixed layer. The deepening of the mixed layer is interpreted as a response to the reduction of the strength of the capping inversion, resulting from cumulative radiative cooling in the residual layer and around the top of the former SBL. Sensitivity studies are performed to separate the two effects. Solar radiative heating of the atmosphere has a smaller impact on the development of the mixed layer than does longwave radiative cooling and slightly reduces its rate of growth, compared to simulations including longwave radiation alone. These simulations demonstrate that nocturnal radiative processes have an important effect on the morning transition and that they should be considered in future large-eddy simulations of the transition.  相似文献   

17.
The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.  相似文献   

18.
Summary A combination of low frequency sodar, radar wind profiler and in-situ balloon-borne measurements of temperature and water vapor have been used to investigate the structure of elevated stratified layers within the transition layer above the nocturnal boundary layer during the Vertical Transport and Mixing Field Campaign in Salt Lake City Utah, during October, 2000. Elevated layers determined from sodar and radar vertical time sections were penetrated with a balloon-born instrument package to determine the fine scale temperature and moisture structure of the layers. As expected a potential temperature increase was found in the upper half of the layers; however the magnitude was considerably smaller than found above the daytime well-mixed layer and the vertical distance of the increase was quite variable. Mixing ratio, in the mean was found to have a relative maximum in the lower portion of the layers. It was found that the potential temperature within the layers decreased with time relative to background values, regardless of whether the layer descended or ascended.  相似文献   

19.
The stable boundary layer which evolved over the lowland of Northern Germany during a clear night with moderate geostrophic winds is studied. Because of the lack of turbulence measurements, a vertical flux-profile of heat and momentum is derived from a mean wind and temperature profile using an integral method. The stability parameter h/L * = 17 indicates that turbulence was sporadic during this particular night. This result is confirmed by the observed inertial oscillations, which occur not only in the residual layer but also in the boundary layer below.The case study shows that turbulent cooling overrules radiational cooling in the lower part of the surface inversion layer. Additionally, warm-air advection occurs. In the upper part, cold-air advection and radiational cooling dominate, while turbulent cooling is reduced. Subsidence warming can be neglected throughout the boundary layer during this particular night.  相似文献   

20.
The effects of an air-temperature inversion in the atmosphere and a seawater density jump in the ocean on the structure of the atmospheric and oceanic boundary layers are studied by use of a coupled model. The numerical model consists of a closed system of equations for velocities, turbulent kinetic energy, turbulent exchange coefficient, local turbulent length scale, and stratification expressions for both air and sea boundary layers. The effects of the temperature inversion and the density jump are incorporated into the equations of turbulent kinetic energy of the atmosphere and ocean by a parameterization. A series of numerical experiments was conducted to determine the effects of various strengths of the inversion layer and surface heat fluxes in the atmosphere and of the density-jump layer in the ocean on the structure of the interacting boundary layers.The numerical results show that the temperature inversion in the atmosphere and density jump in the ocean have strong influences on turbulent structure [especially on the turbulent exchange coefficient (TEC) and turbulent kinetic energy (TKE)] and on air-sea interaction characteristics. Maxima of TKE and TEC strongly decrease with increasing strength of the inversion layer, and they disappear for strong inversions in the atmosphere. Certain strengths (density differences between the upper and the lower layers) of the density-jump layer in the ocean (2 0.1 g/cm3) produce double maxima in TEC-profiles and TKE-profiles in the ocean. The magnitudes of air-sea interaction characteristics such as geostrophic drag coefficient, and surface drift current increase with increasing strength of the density-jump layer in the ocean. The density-jump layer plays the role of a barrier that limits vertical mixing in the ocean. The numerical results agree well with available observed data and accepted quantitive understanding of the influences of a temperature inversion layer and a density-jump layer on the interacting atmospheric and oceanic boundary layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号