首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
During the Limagne and Beauce experiments, the INAG-IGN Aerocommander FL 280 aircraft made extensive ‘in situ’ measurements of turbulent fluctuations in diurnally evolving convective boundary layers. In this paper, these measurements were used to investigate characteristics of the molecular dissipation of turbulent fluctuations through the mixed layer and well into the overlying stable layer. The dimensionless dissipation rates of turbulent kinetic energy, temperature and humidity variances, and temperature-humidity covariance (ψ, ψθ, ψ qand ψ θq) were computed and their height variations analysed. The behaviour of the dissipation rate ψ was found to differ significantly from those observed for the other rates. In the lowest region of the mixed layer, ψ does not obey the local free convection prediction. Instead, it follows practically a relationship similar to the one established in the surface layer by Wyngaard et al. (1971). The dissipation rate ψ remains fairly constant in the bulk of the mixed layer (0.3 ≤ z/Z i≤ 0.8) and shows a very rapid decrease above the inversion. These results confirm those reported previously from the Minnesota and Ashchurch data by Kaimal et al. (1976), Caughey and Palmer (1979), etc. The height variations for the other dissipation rates were found to obey, as expected, the (z/Z i)-4/3 decrease predicted under the local free convection similarity hypothesis in the lowest region of the mixed layer. This region extends to the height z/Z i- 0.4, 0.1, and 0.3, respectively, for ψθ, ψq, and ψθq. Above these levels, the dissipation rates ψθ and ψq show, on average, a slight increase to reach peak-values near the mixed-layer top, while the ‘dissipation’ rate ψ θqchanges sign from positive to negative around the height z/Z i, - 0.7. These characteristics confirm the fact that the structures of temperature and humidity fluctuations are considerably affected by their entrainment-induced fluctuations. Therefore, an attempt has been made to non-dimensionalize the dissipation rates near the mixed-layer top with the interfacial scaling factors.  相似文献   

2.
Here we advance the physical background of the energy- and flux-budget turbulence closures based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the turbulent dissipation time scale. The closure is designed for stratified geophysical flows from neutral to very stable and accounts for the Earth’s rotation. In accordance with modern experimental evidence, the closure implies the maintaining of turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: “strong turbulence” at ${Ri \ll 1}$ typical of boundary-layer flows and characterized by the practically constant turbulent Prandtl number Pr T; and “weak turbulence” at Ri > 1 typical of the free atmosphere or deep ocean, where Pr T asymptotically linearly increases with increasing Ri (which implies very strong suppression of the heat transfer compared to the momentum transfer). For use in different applications, the closure is formulated at different levels of complexity, from the local algebraic model relevant to the steady-state regime of turbulence to a hierarchy of non-local closures including simpler down-gradient models, presented in terms of the eddy viscosity and eddy conductivity, and a general non-gradient model based on prognostic equations for all the basic parameters of turbulence including turbulent fluxes.  相似文献   

3.
We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University’s atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /|θ*| was related to z/L, roughly following a –1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a –2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.  相似文献   

4.
The dissipation rate of turbulent kinetic energy, , and the temperature structure function parameter, C T 2, have been measured over water from the near surface (Z = 3 m) to the top of the boundary layer. The near surface values of and C T 2 were used to calculate the velocity and temperature Monin-Obukhov scaling parameters u * and T *. The data collected during unstable lapse rates were used to evaluate the feasibility of extrapolating the values of and C T 2 as a function of height with empirical scaling formulae. The dissipation rate scaling formula of Wyngaard et al. (l971 a) gave a good fit to an average of the data for Z < 0.8 Z i. In the surface layer the scaling formula of Wyngaard et al. (1971b) disagreed with the C T 2 values by as much as 50%. This disagreement is due to an unexpected reduction in the measured values of C T 2 forZ < 30 m. At this point it is not clear if the discrepancy is a unique property of the marine boundary layer or if it is simply some unknown instrumental or analytical problem. The mixed layer scaling results were similar to the overland results of Kaimal et al. (1976).  相似文献   

5.
We give a new derivation of the familiar linear relation for the dimensionless velocity gradient in the stably stratified surface layer and provide physical and empirical grounds for its universal applicability in stationary homogeneous turbulence over the whole range of static stabilities from Ri =  0 to very large Ri. Combining this relation with the budget equation for the turbulent kinetic energy we obtain the “equilibrium formulation” of the turbulent dissipation length scale, and recommend it for use in turbulence closure models.  相似文献   

6.
利用杭瑞高速公路洞庭湖大桥北岸测风塔的梯度风观测资料、三维超声风温仪资料以及岳阳气象站提供的逐小时气溶胶浓度和能见度观测资料,对湖南岳阳2017年1月28日的一次重度霾天气中的重污染过程的近地层物理量变化特征进行了分析,结果表明:(1)重污染来临前约130 min即28日01:50(北京时间,下同),水平风速、垂直风速、高低层风切变都出现零值,大气处于静稳状态。重污染结束前180 min即28日09:00,上述物理量和高低层温度切变出现零值。(2)湍流强度在重污染来临前有强烈异常信号,其中水平纵向湍流强度异常信号最明显,于重污染发生前130 min出现异常峰值4.15,重污染结束前180 min出现异常峰值3.24。(3)湍流动能和动量通量都在重污染来临前130 min接近0.0 m2/s2,即湍流交换最弱,有利于污染物在近地面的持续堆积和重污染过程的发生。近地层的平均物理量和湍流特征量的异常信号的出现时间有较好的一致性,即出现在重污染来临前的130 min和结束前的180 min。揭示了重度霾污染天气的近地层物理量时间变化规律,着重分析了霾污染的生成、发展、消亡全过程的边界层湍流异常的前期信号,为深入认识霾污染天气进行有益的探索并为这类天气的预测预警提供科学依据。  相似文献   

7.
8.
Turbulent fluxes obtained using the conventional eddy covariance approach result in erratic results with large time fluctuations in extremely stable conditions. This can limit efforts to estimate components of the nocturnal energy budget and respiratory CO2 fluxes. Well-organized fluxes that show a clear dependence on turbulent intensity were obtained when multiresolution decomposition was used to estimate turbulent exchanges. CO2, heat and water vapour fluxes were observed at a site in the eastern Amazon basin that had been cleared for agricultural purposes. Temporal scales of the carbon transfer were determined and shown to be similar to those of latent heat, but as much as three times larger than those of sensible heat. CO2 eddy diffusivities at the temporal scales on which most of the vertical CO2 exchange occurs are shown to be 50 times larger than the eddy diffusivity for heat. A process associated with the vertical scale of the scalar accumulation layer is suggested to explain these different scales and turbulent diffusivities of carbon and sensible heat transfer. For an appreciable range of turbulence intensities, the observed vertical turbulent carbon exchange is insufficient to account for the locally respired CO2 estimated independently. Evidence that shallow drainage currents may account for this is given.  相似文献   

9.
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where \(C = 3d_{3}\,+\,1 (d_{3}\) is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when \(C \approx 1\), and anisotropic when \(C \ll 1\). Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability \(\xi = (z-z_{\mathrm{d}})/L_{{\textit{MO}}}\), where z is the measurement height, \(z_{\mathrm{d}}\) is the displacement height, and \(L_{{\textit{MO}}}\) is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., \(\xi < 0\)) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.  相似文献   

10.
Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy   总被引:58,自引:42,他引:16  
This paper argues that the active turbulence and coherent motions near the top of a vegetation canopy are patterned on a plane mixing layer, because of instabilities associated with the characteristic strong inflection in the mean velocity profile. Mixing-layer turbulence, formed around the inflectional mean velocity profile which develops between two coflowing streams of different velocities, differs in several ways from turbulence in a surface layer. Through these differences, the mixing-layer analogy provides an explanation for many of the observed distinctive features of canopy turbulence. These include: (a) ratios between components of the Reynolds stress tensor; (b) the ratio K H/K M of the eddy diffusivities for heat and momentum; (c) the relative roles of ejections and sweeps; (d) the behaviour of the turbulent energy balance, particularly the major role of turbulent transport; and (e) the behaviour of the turbulent length scales of the active coherent motions (the dominant eddies responsible for vertical transfer near the top of the canopy). It is predicted that these length scales are controlled by the shear length scale % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa% aaleaacaWGtbaabeaakiabg2da9iaadwfacaGGOaGaamiAaiaacMca% caGGVaGabmyvayaafaGaaiikaiaadIgacaGGPaaaaa!3FD0!\[L_S = U(h)/U'(h)\] (where h is canopy height, U(z) is mean velocity as a function of height z, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaafa% Gaeyypa0JaaeizaiaadwfacaGGVaGaaeizaiaadQhaaaa!3C32!\[U' = {\rm{d}}U/{\rm{d}}z\]). In particular, the streamwise spacing of the dominant canopy eddies is x = mL s, with m = 8.1. These predictions are tested against many sets of field and wind-tunnel data. We propose a picture of canopy turbulence in which eddies associated with inflectional instabilities are modulated by larger-scale, inactive turbulence, which is quasi-horizontal on the scale of the canopy.  相似文献   

11.
A land surface processes experiment (LASPEX) was conducted in the semi-arid region of Northwest India during January 1997–February 1998. Analysis of turbulent components of wind and air temperature collected in the surface layer (SL) at Anand (22°35′N, 72°55′E) during the Indian summer monsoon season from June to September 1997 is presented. Turbulent fluctuation of wind components and air temperature observed at Anand varied as a function of terrain features and stability of the surface layer. Under neutral conditions, the standard deviation of vertical velocity (σ w ) and temperature (σ T ) were normalized using respective surface layer scaling parameter u * and T * which fitted the expressions σ w /u * = 1.25 and σ T /T * ≈ 4. Micrometeorological spectrum of wind and temperature at 5 m above ground level (AGL) at Anand showed peaks at time scale of 1–3 min at the low-frequency end. The inertial sub-range characteristics (?2/3 slope) of the spectrum are exhibited mostly. However, in some occasions, slope of ?1 denoting brown noise was depicted by the wind and temperature spectrum, which indicated anisotropy in turbulence.  相似文献   

12.
Summary Problems of turbulent dissipation of a cold air lake (CAL) and the inversion layer bordering CAL on the upper boundary are presented and studied with the compound model. In wintertime such cold air lakes can persist for days even if rather strong winds are blowing above them. The required conditions for CAL dissipation are removed processes of its formation or maintenance, as well as a sufficiently strong invasion of turbulence in the inversion layer from above down-wards. By this, the inversion layer at first becomes stronger and dissipation is stopped, until the increase of turbulent kinetic energy of the upper flow enables further dissipation. Such turbulent dissipation process is shown by the model for typical conditions and for different initial values of the relevent variables.With 6 Figures  相似文献   

13.

The nocturnal low-level jet (LLJ) and orographic (gravity) waves play an important role in the generation of turbulence and pollutant dispersion and can affect the energy production by wind turbines. Additionally, gravity waves have an influence on the local mixing and turbulence within the surface layer and the vertical flux of mass into the lower atmosphere. On 25 September 2017, during a field campaign, a persistent easterly LLJ and gravity waves were observed simultaneously in a coastal area in the north of France. We explore the variability of the wind speed, turbulent eddies, and turbulence kinetic energy in the time–frequency and space domain using an ultrasonic anemometer and a scanning wind lidar. The results reveal a significant enhancement of the turbulence-kinetic-energy dissipation (by?50%) due to gravity waves in the LLJ shear layer (below the jet core) during the period of wave propagation. Large magnitudes of zonal and vertical components of the shear stress (approximately 0.4 and 1.5 m2 s?2, respectively) are found during that period. Large eddies (scales of 110 to 280 m) matching the high-wind-speed regime are found to propagate the momentum downwards, which enhances the mass transport from the LLJ shear layer to the roughness layer. Furthermore, these large-scale eddies are associated with the crests while comparatively small-scale eddies are associated with the troughs of the gravity wave.

  相似文献   

14.
It is shown that K-theory has to be modified for chemical systems that react with time scales similar to the turbulence time scale. In such systems, the value of the exchange coefficient depends not only on the turbulence parameters, but also on the chemical reaction rates. As an example, the NO-O3-NO2 chemical system is studied. Using second-moment equations, new flux-gradient relationships for the neutral atmospheric surface layer are obtained which depend on the time scale ratios of turbulence ( t ) and chemical reactions ( ch), i.e., reactive K-theory. Within the framework of this reactive K-theory, the flux of a chemical species is both a function of the concentration gradients of the three chemical species involved and of the ratio of the time scale of turbulence to the time scale of chemistry. In the special case of slow chemistry ( t ch) inert K-theory is applicable.The reactive exchange coefficients are implemented in a surface-layer model that calculates the flux and concentration profiles of the three chemical species. The results of the calculations of the effective exchange coefficients are different for reactive K-theory and inert K-theory; the differences are largest for nitric oxide, but smaller for ozone and nitrogen dioxide.  相似文献   

15.
We present a new account of the kinetic energy budget within an unstable atmospheric surface layer (ASL) beneath a convective outer layer. It is based on the structural model of turbulence introduced by McNaughton (Boundary-Layer Meteorology, 112: 199–221, 2004). In this model the turbulence is described as a self-organizing system with a highly organized structure that resists change by instability. This system is driven from above, with both the mean motion and the large-scale convective motions of the outer layer creating shear across the surface layer. The outer convective motions thus modulate the turbulence processes in the surface layer, causing variable downwards fluxes of momentum and kinetic energy. The variable components of the momentum flux sum to zero, but the associated energy divergence is cumulative, increasing both the average kinetic energy of the turbulence in the surface layer and the rate at which that energy is dissipated. The tendency of buoyancy to preferentially enhance the vertical motions is opposed by pressure reaction forces, so pressure production, which is the work done against these reaction forces, exactly equals buoyant production of kinetic energy. The pressure potential energy that is produced is then redistributed throughout the layer through many conversions, back and forth, between pressure potential and kinetic energy with zero sums. These exchanges generally increase the kinetic energy of the turbulence, the rate at which turbulence transfers momentum and the rate at which it dissipates energy, but does not alter its overall structure. In this model the velocity scale for turbulent transport processes in the surface layer is (kzɛ)1/3 rather than the friction velocity, u*. Here k is the von Kármán constant, z is observation height, ɛ is the dissipation rate. The model agrees very well with published experimental results, and provides the foundation for the new similarity model of the unstable ASL, replacing the older Monin–Obukhov similarity theory, whose assumptions are no longer tenable.  相似文献   

16.
Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parametrize remote turbulence measurements, and to characterize ramp features in the turbulent field. Ramp features are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. The analysis of structure functions to identify ramp characteristics is used in surface renewal methods for estimating fluxes. It is unclear how commonly observed different scales of ramp-like shapes (i.e., smaller ramps and spikes embedded in larger ramps) influence structure function analysis. Here, we examine the impact of two ramp-like scales on structure function analysis using artificially generated data. The range of time lags in structure function analysis was extended to include time lags typically associated with isotropic turbulence to those larger than the ramp durations. The Van Atta procedure (Arch Mech 29:161–171, 1977) has been expanded here to resolve the characteristics of two-scale ramp models. This new method accurately, and in some cases, exactly determines the amplitude and duration of both ramp scales. Spectral analysis was applied to the structure functions for a broad range of time lags to provide qualitative support for the expanded Van Atta procedure results. The theory reported here forms the foundation for novel methods of analyzing turbulent coherent structures.  相似文献   

17.
This paper summarizes some measurements of high-frequency turbulence made at Cardington during the years 1968, 1969 and 1970 at heights up to 900 m. It discusses the statistical distribution of the data which appears to be closely log-normal. Also it is shown how the mean profiles of the derived dissipation of turbulent kinetic energy () can be rationalized to some extent in terms of atmospheric stability and low-level wind speed. A close correlation between and the mean wind and temperature profiles up to 900 m is illustrated and some discussion of the turbulent energy budget throughout the boundary layer is presented. The use and limitations of the constant flux layer relations in calculatingz 0 andL from the estimates of, at the lower heights, is brought out.  相似文献   

18.
Scintillation measurements with a HeNe and a CO2 laser were used to derive turbulent fluxes of heat and momentum in the surface layer. This was achieved by the structure constant or dissipation technique, i.e., by relating the measured structure constants and inner scales of refractive index fluctuations to structure constants of temperature fluctuations and dissipation rates of turbulent kinetic energy, respectively, and then assuming Monin-Obukhov similarity.The resulting heat fluxes agree well with measurements using the eddy correlation technique but for averaging periods of 10 min, the optical data show a much smoother and physically more plausible behaviour. The optically derived friction velocities are in good agreement with estimates derived from wind velocity and surface roughness. It was also observed that for stationary conditions, 1-min averaged optical measurements already provide good estimates for longer averaged heat and momentum fluxes.Even though some uncertainty remains about the empirical constants and Monin-Obukhov similarity expressions used, the method clearly proves to be of great value for monitoring surface-layer turbulence.  相似文献   

19.
A simple model to study the decay of turbulent kinetic energy (TKE) in the convective surface layer is presented. In this model, the TKE is dependent upon two terms, the turbulent dissipation rate and the surface buoyancy fluctuations. The time evolution of the surface sensible heat flux is modelled based on fitting functions of actual measurements from the LITFASS-2003 field campaign. These fitting functions carry an amplitude and a time scale. With this approach, the sensible heat flux can be estimated without having to solve the entire surface energy balance. The period of interest covers two characteristic transition sub-periods involved in the decay of convective boundary-layer turbulence. The first sub-period is the afternoon transition, when the sensible heat flux starts to decrease in response to the reduction in solar radiation. It is typically associated with a decay rate of TKE of approximately t −2 (t is time following the start of the decay) after several convective eddy turnover times. The early evening transition is the second sub-period, typically just before sunset when the surface sensible heat flux becomes negative. This sub-period is characterized by an abrupt decay in TKE associated with the rapid collapse of turbulence. Overall, the results presented show a significant improvement of the modelled TKE decay when compared to the often applied assumption of a sensible heat flux decreasing instantaneously or with a very short forcing time scale. In addition, for atmospheric modelling studies, it is suggested that the afternoon and early evening decay of sensible heat flux be modelled as a complementary error function.  相似文献   

20.
Measurements of temperature and velocity microstructure near and downstream of a shallow seamount are used to compare fossil turbulence versus non-fossil turbulence models for the evolution of turbulence microstructure patches in the stratified ocean. According to non-fossil oceanic turbulence models, all overturn length scales LT of the microstructure grow and collapse in constant proportion to each other and to the turbulence energy (Oboukov) scale LO and the inertial buoyancy (Ozmidov) scale of the patches; that is, with LTrms ≈1.2LR and viscous dissipation rate 0*. According to the Gibson fossil turbulence model, all microstructure originates from completely active turbulence with 0 ≈ 3LT2N3(≈ 280*) and LT/√6 ≈ LTrms, but this rapidly decays into a more persistent active-fossil state with 0F ≈ 30vN2, where N is the buoyancy frequency and v is the kinematic viscosity and, without further energy supply, finally reaches a completely fossil turbulence hydrodynamic state of internal wave motions, with F. The last turbulence eddies, with F, vanish at a buoyant-inertial-viscous (fossil Kolmogorov) scale LKF that is much smaller than the remnant overturn scales LT for large 0/F ratios. These density, temperature, and salinity overturns with LT ≈ 0.6 LR0 0.6 LR persist as turbulence fossils (by retaining the memory of o) and collapse very slowly. In the near wake below the summit depth of Ampere seamount, a much larger proportion of completely active turbulence patches was found than is usually found in the ocean interior away from sources. Dissipation rates and turbulence activity coefficients of microstructure patches were found to decrease downstream, suggesting that the active turbulence indicated by the patches with AT 1 was caused by the presence of the seamount as a turbulence source. Therefore, the turbulence and mixing processes of ocean layers far away from turbulence sources probably have been undersampled by microstructure data sets lacking any AT 1 patches. This is because large fractions of the mixing and viscous dissipation of the patches occur in short-lived active turbulence regimes that are too brief to be detected. Consequently, large underestimates of the true space-time average turbulence fluxes and turbulence and scalar dissipation rates may result if non-fossil turbulence models are assumed in ocean microstructure data interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号