首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The differences between physical conditions in solar faculae and those in sunspots and quiet photosphere (increased temperature and different magnetic field topology) suggest that oscillation characteristics in facula areas may also have different properties. The analysis of 28 time series of simultaneous spectropolarimetric observations in facula photosphere (Fe?i 6569 Å, 8538 Å) and chromosphere (Hα, Ca?ii 8542 Å) yields the following results. The amplitude of five-minute oscillations of line-of-sight (LOS) velocity decreases by 20?–?40% in facula photosphere. There are only some cases revealing the inverse effect. The amplitude of four- to five-minute LOS velocity oscillations increases significantly in the chromosphere above faculae, and power spectra fairly often show pronounced peaks in a frequency range of 1.3?–?2.5 mHz. Evidence of propagating oscillations can be seen from space?–?time diagrams. We have found oscillations of the longitudinal magnetic field (1.5?–?2 mHz and 5.2 mHz) inside faculae.  相似文献   

2.
Observations made by the differential method in the H line have revealed longperiod (on a timescale of 40 to 80 min) line-of-sight velocity oscillations which increase in amplitude with distance from the centre to the solar limb and, as we believe, give rise to prominence oscillations. As a test, we present some results of simultaneous observations at the photospheric level where such periods are absent.Oscillatory processes in the solar chromosphere have been studied by many authors. Previous efforts in this vein led to the detection of shortperiod oscillations in both the mass velocities and radiation intensity (Deubner, 1981). The oscillation periods obtained do not, normally, exceed 10–20 min (Dubov, 1978). More recently, Merkulenko and Mishina (1985), using filter observations in the H line, found intensity fluctuations with periods not exceeding 78 min. However, the observing technique they used does not exclude the possibility that those fluctuations were due to the influence of the Earth's atmosphere. It is also interesting to note that in spectra obtained by Merkulenko and Mishina (1985), the amplitude of the 3 min oscillations is anomalously small and the 5 min period is altogether absent, while the majority of other papers treating the brightness oscillations in the chromosphere, do not report such periods in the first place. So far, we are not aware of any other evidence concerning the longperiod velocity oscillations in the chromosphere on a timescale of 40–80 min.Longperiod oscillations in prominences (filaments) in the range from 40 to 80 min, as found by Bashkirtsev et al. (1983) and Bashkirtsev and Mashnich (1984, 1985), indicate that such oscillations can exist in both the chromosphere and the corona (Hollweg et al., 1982).In this note we report on experimental evidence for the existence of longperiod oscillations of mass velocity in the solar chromosphere.  相似文献   

3.
The Hanle effect has been extensively used for the determination of the magnetic field strength and direction in solar prominences. Here we address the problem of the diagnostics of weak magnetic fields in the solar photosphere and chromosphere by means of their Hanle effect in some selected absorption lines. As this is a relatively new area we will focus on the diagnostic methods and summarize some results that relate to the presence of a weak, turbulent magnetic field in the photosphere and to the chromospheric magnetic canopy. Finally we will outline some directions for future work.  相似文献   

4.
Yuanyong  Deng  Guoxiang  Ai  Jingshan  Wang  Guofeng  Song  Bin  Zhang  Xiangming  Ye 《Solar physics》1997,173(2):207-221
In this paper, we have made a report on the test observations with a Multi-Channel Solar Telescope (MCST), which consists of 60 cm Nine-Channel Solar Telescope (NCST), 35 cm Solar Magnetic Field Telescope (SMFT), 8 cm Full Disc Telescope (FDT), 10 cm Full Disc Magnetic Field Telescope (FDMFT) and 14 cm H telescope. These observations demonstrate that the MCST has the following advantages: (a) It can work at more than nine visible spectral lines simultaneously. In this way, different solar layers of the photosphere and chromosphere can be observed at the same time; (b) every channel of the NCST is entirely equivalent to a videomagnetograph, by means of which the vector magnetic fields and line-of-sight velocity fields can be measured; (c) real-time monochromatic images of the photosphere and chromosphere can be obtained with the FDT, FDMFT, and H Telescope; (d) high-temporal-resolution full-disk magnetic fields can be measured with the FDMFT; (e) spectral profiles over a large field of view can be scanned with the NCST.  相似文献   

5.
We present results of the study of chromospheric and photospheric line-of-sight velocity fields in the young active region NOAA 11024. Multi-layer, multi-wavelength observational data were used for the analysis of the emerging flux in this active region. Spectropolarimetric observations were carried out with the telescope THEMIS on Tenerife (Canary Islands) on 4 July 2009. In addition, space-borne data from SOHO/MDI, STEREO and GOES were also considered. The combination of data from ground- and space-based telescopes allowed us to study the dynamics of the lower atmosphere of the active region with high spatial, spectral, and temporal resolutions. THEMIS spectra show strong temporal variations of the velocity in the chromosphere and photosphere for various activity features: two pores, active and quiet plage regions, and two surges. The range of variations of the chromospheric line-of-sight velocity at the heights of the formation of the Hα core was extremely large. Both upward and downward motions were observed in these layers. In particular, a surge with upward velocities up to ?73 km?s?1 was detected. In the photosphere, predominantly upward motions were found, varying from ?3.1 km?s?1 upflows to 1.4 km?s?1 downflows in different structures. The velocity variations at different levels in the lower atmosphere are compatible with the emergence of magnetic flux.  相似文献   

6.
Horizontal motion has been studied of the matter along the active region at different heights of the photosphere (115–580 km) in the initial phase of the two-ribbon solar flare on September 4, 1990, near the solar limb, accompanied by the ejection. Photospheric velocities varied in the range −3.5 ... 2.5 km/s. The direction of motion in the photosphere and the chromosphere was mainly toward the observer. Kinematic elements have been discovered in the structure of the horizontal velocity field. Their size reduced as they approached the maximum of the flare from 7–12 to 4–5 Mm, and the velocity amplitude decreased. Throughout the whole investigated active region, vortex motions were observed in the photosphere and chromosphere. Temporal changes in the horizontal velocity field in node areas and in their vicinity were oscillatory in nature and occurred almost simultaneously along the entire height of the photosphere.  相似文献   

7.
First observations of the full Stokes vector in the upper chromosphere are presented. The He I 10830 Å line, which has been shown to give reliable measurements of the line-of-sight component of the magnetic field vector, has been used for this purpose. It is shown that the difference between the appearance of chromospheric and photospheric magnetic structures observed close to the solar limb is largely due to the difference in height to which they refer and projection effects. The observations do suggest, however, that the magnetic field above sunspot penumbrae is somewhat more vertical in the chromosphere than in the photosphere.The National Optical Astronomy Obervatories are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation  相似文献   

8.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

9.
A systematic study of the internal horizontal (line-of-sight) motions of quiescent prominences which were observed at the limb has been made by using fourier techniques to analyse the shift of the Ca ii K line as a function of height above the limb. The results indicate that a characteristic size for the velocity elements is present in 70% of the 13 prominences studied. This size of 4700 km is attributed to Alfvén waves induced by horizontal convective motions in the photosphere as previously suggested by Malville. The qualitative aspects of the observations are described by a simple model which is based on this hypothesis.Presently at Department of Astronomy, Pennsylvania State University, 525 Davey Lab., University Park, PA 16802.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
A multiwavelength photometric analysis was performed in order to study the sub-structure of a sunspot light bridge in the photosphere and the chromosphere. Active region NOAA 8350 was observed on 1998 October 8. The data consist of a 100 min time series of 2D spectral scans of the lines Fe  i 5576 Å, Hα 6563 Å, Fe  i 6302.5 Å, and continuum images at 5571 Å. We recorded line-of-sight magnetograms in 6302.5 Å. The observations were taken at the Dunn Solar Telescope at US National Solar Observatory, Sacramento Peak. We find evidence for plasma ejection from a light bridge followed by Ellerman bombs. Magnetograms of the same region reveal opposite polarity in light bridge with respect to the umbra. These facts support the notion that low-altitude magnetic reconnection can result in the magnetic cancellation as observed in the photosphere.  相似文献   

11.
本文通过太阳活动区光球和色球速度场和磁场观测资料,讨论了黑子活动区附近流场的精细结构,论述了太阳大气中物质的流动呈纤维结构,以及速度场纤维与磁场,色球纤维和网络结构之间的关系。  相似文献   

12.
Semiempirical models of the photosphere of an Ellerman bomb in the NOAA 11024 active region were obtained using profiles of Stokes parameters I, Q, U, and V of photospheric lines. Spectropolarimetric observations were conducted using the French–Italian THEMIS telescope (Tenerife, Spain). The SIR inversion code [28] was used in the modeling. The models have two components: a magnetic flux tube and nonmagnetic surroundings. The dependences of temperature, magnetic field strength, inclination of the magnetic field vector, and line-of-sight velocity in the tube on the optical depth were obtained. The models demonstrate that the thermodynamic parameters of the Ellerman bomb photosphere differ considerably from those of the quiet photosphere. The temperature in the tube model varied nonmonotonically with height and deviated by up to 700–900 K from its values for the quiet photosphere. Downflows were observed in the lower and the upper photospheric layers. The line-of-sight velocity in the upper layers of the photosphere was as high as 17 km/s. The magnetic field strength in the models varied from 0.1–0.13 T in the lower photospheric layers to 0.04–0.07 T in the upper ones. The physical state of the photosphere did change in the course of observations.  相似文献   

13.
We discuss the problems connected with the measurements and evaluation of line-of-sight velocities, obtained with a scanning photoelectric magnetograph using a line-shifter with enhanced sensitivity. We bring arguments for the validity of the results of our photoelectric Doppler velocity recordings. We have found a network of cellularly shaped patterns in the distribution of photo-electrically measured line-of-sight motions, upflowing in the magnetically quiet (blue-shifted) and downflowing in magnetically active (red-shifted) areas of the photosphere, if the mean velocity level is estimated for a sufficiently large measured area. The features of both directions are mutually complementary. We demonstrate the effect of the shift of the reference zero velocity level on the topology of the line-of-sight velocity maps, and the dependence of this level on the size of the area from which it is estimated.  相似文献   

14.
We assume that the motion field in the solar photosphere is described by a spectrum of turbulence, defined by suitably chosen parameters. For various values of the spectral parameters we compute average (i.e. averaged over a sufficiently large part of the photosphere) profiles of weak Fraunhofer lines. The resulting profiles which represent the distribution function of line-of-sight velocity components as modified by the transfer of radiation through the atmosphere, are thereupon still broadened by a function representing the influence of the distribution function of the granulation cell sizes. The resulting functions should be compared with the distribution function of line-of-sight velocity components as derived from observations, in order to arrive at an observational derivation of the parameters of the photospheric spectrum of turbulence.  相似文献   

15.
Liszka  Ludwik 《Solar physics》1970,14(2):354-365
Measurements of line-of-sight velocities of quiescent and sunspot prominences on the limb made during the years 1966 and 1968 at Swedish Astrophysical Station in Anacapri, Italy are discussed. Several statistical properties of the velocity field, in particular its connection with close McMath plages are investigated. Results are interpreted in terms of oscillatory motion in prominences.  相似文献   

16.
One dimensional magnetograph scans have been used to study the 5-min photospheric velocity oscillations and the supergranulation. The oscillations in wing brightness lead the oscillations in velocity by less than 90° in the photosphere, and about 90° in the chromosphere, suggesting that they are traveling waves at lower levels and standing waves at higher levels. Downward flows have been observed to be coincident with the chromospheric network confirming the hypothesis that material is flowing downward at supergranular boundaries.  相似文献   

17.
Pores can be exploited for the understanding of the interaction between small-scale vertical magnetic field and the surrounding convective motions as well as the transport of mechanical energy into the chromosphere along the magnetic field. For better understanding of the physics of pores, we investigate tiny pores in a new emerging active region (AR11117) that were observed on 26 October 2010 by the Solar Optical Telescope (SOT) on board Hinode and the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST). The pores are compared with nearby small magnetic concentrations (SMCs), which have similar magnetic flux as the pores but do not appear dark. Magnetic flux density and Doppler velocities in the photosphere are estimated by applying the center-of-gravity method to the Hinode/Spectro-Polarimeter data. The line-of-sight motions in the lower chromosphere are determined by applying the bisector method to the wings of the Hα and the Ca?ii 8542 Å line simultaneously taken by the FISS. The coordinated observation reveals that the pores are filled with plasma which moves down slowly and are surrounded by stronger downflow in the photosphere. In the lower chromosphere, we found that the plasma flows upwards inside the pores while the plasma in the SMCs is always moving down. Our inspection of the Ca?ii 8542 Å line from the wing to the core shows that the upflow in the pores slows down with height and turns into downflow in the upper chromosphere while the downflow in the SMCs gains its speed. Our results are in agreement with the numerical studies which suggest that rapid cooling of the interior of the pores drives a strong downflow, which collides with the dense lower layer below and rebounds into an upflow.  相似文献   

18.
J. Koza 《Solar physics》2010,266(2):261-275
We examine the sensitivity of selected Ba?ii, Fe?i, Fe?ii, and Cr?i spectral lines to changes of the line-of-sight velocity by sharpness of their line profiles and response functions to line-of-sight velocity evaluated by the 1-D model of the quiet solar atmosphere in the LTE approximation. The set of selected lines includes the Ba?ii 4554 Å line, generally considered to be an excellent Doppler mapper. Our findings confirm earlier results showing that the sensitivity increases not only with wavelength, as anticipated from the Doppler relation, but mainly with the sharpness of line profiles given by the ratio of their depths and widths. The line Fe?i 5247 Å is the most sensitive in our set, whereas the Fe?i and Fe?ii infrared lines show very low sensitivity because of their large thermal widths. The line Ba?ii 4554 Å shows only moderate sensitivity due to its large width, given by a broad hyperfine structure and isotopic split. For the first time we identify a very promising and so far unknown Doppler mapper of the solar photosphere and low chromosphere, which is the line Ba?ii 6497 Å. Its sensitivity is comparable with the sensitivity of Fe?i 5247 Å and clearly surpasses the sensitivity of Ba?ii 4554 Å. The line Ba?ii 6497 Å offers many advantages, making it a highly recommendable choice for future studies of line-of-sight velocities in the photosphere and low chromosphere.  相似文献   

19.
Recently new values of the lithium formation rate in low energy flares have been reported in the literature. These values are applied to the white light flare phenomenon on the Sun. It is found that the formation rate in the chromosphere is much larger than in the upper photosphere and that the ratio between the time integrated flare created abundance and the initial photospheric abundance is modest in the chromosphere and small in the upper photosphere. The yield of Li6 in the upper photosphere is, however, comparable to the upper limit of Li6 there.  相似文献   

20.
We studied changes in thermodynamic parameters of the chromosphere at the initial stage of the two-ribbon solar flare accompanied by a surge that occurred on September 4, 1990. The inhomogeneous semiempirical models of the flare chromosphere and surge are constructed for four observation moments. The spectra were obtained with the ATsU-26 horizontal solar telescope of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Terskol Peak). Photometric transections of the spectra passed through two bright kernels of one of the flare ribbons and through the surge. The comparison of the observed profiles of the line Hα in the solar active and quiet-Sun regions reveals the substantial emission in the line wings (up to 1–1.2 nm) with a residual intensity of 0.6–0.77 at the center of the line profiles. Calculations within the two-component models of the chromosphere have shown that this may be the evidence of the existence of the details (unresolved by the telescope and occupying 5–12% of the total area) with a deep heating of the chromosphere layers. A strong asymmetry of the line profiles and the shift with respect to the line profile for the quiet-Sun region are explained by peculiarities of the line-of-sight velocity distribution over the height. It is found that the motion is directed to the observer in the upper chromosphere (10–30 km/s) and from the observer in the lower chromosphere (5–20 km/s) for the larger part of the active region under study. According to the models calculated for the surge, the line-of-sight velocities reach a value of 70 km/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号