首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we present the multivariable variogram, which is defined in a way similar to that of the traditional variogram, by the expected value of a distance, squared, in a space withp dimensions. Combined with the linear model of coregionalization, this tool provides a way for finding the elementary variograms that characterize the different spatial scales contained in a set of data withp variables. In the case in which the number of elementary components is less than or equal to the number of variables, it is possible, by means of nonlinear regression of variograms and cross-variograms, to estimate the coregionalization parameters directly in order to obtain the elementary variables themselves, either by cokriging or by direct matrix inversion. This new tool greatly simplifies the procedure proposed by Matheron (1982) and Wackernagel (1985). The search for the elementary variograms is carried out using only one variogram (multivariable), as opposed to thep(p + 1)/2 required by the Matheron approach. Direct estimation of the linear coregionalization model parameters involves the creation of semipositive definite coregionalization matrices of rank 1.  相似文献   

2.
Covariance models provide the basic measure of spatial continuity in geostatistics. Traditionally, a closed-form analytical model is fitted to allow for interpolation of sample Covariance values while ensuring the positive definiteness condition. For cokriging, the modeling task is made even more difficult because of the restriction imposed by the linear coregionalization model. Bochner's theorem maps the positive definite constraints into much simpler constraints on the Fourier transform of the covariance, that is the density spectrum. Accordingly, we propose to transform the experimental (cross) covariance tables into quasidensity spectrum tables using Fast Fourier Transform (FFT). These quasidensity spectrum tables are then smoothed under constraints of positivity and unit sum. A backtransform (FFT) yields permissible (jointly) positive definite (cross) covariance tables. At no point is any analytical modeling called for and the algorithm is not restricted by the linear coregionalization model. A case study shows the proposed covariance modeling to be easier and much faster than the traditional analytical covariance modeling, yet yields comparable kriging or simulation results.  相似文献   

3.
A coregionalization simulation consists of the generation of realizations of a group of spatially related random variables. The Fourier integral method is presented, modified to carry out such a multivariable simulation. This method allows the simulation of realizations with any specified symmetrical covariance matrix and it is not limited to the classic linear model of coregionalization. The results of gaussian nonconditinal simulations from a case study modeling the spatial characteristics of a layer of coal are given.  相似文献   

4.
Myers developed a matrix form of the cokriging equations, but one that entails the solution of a large system of linear equations. Large systems are troublesome because of memory requirements and a general increase in the matrix condition number. We transform Myers’s system into a set of smaller systems, whose solution gives the classical kriging results, and provides simultaneously a nested set of lower dimensional cokriging results. In the course of developing the new formulation we make an interesting link to the Cauchy-Schwarz condition for the invertibility of a system, and another to a simple situation of coregionalization. In addition, we proceed from these new equations to a linear approximation to the cokriging results in the event that the crossvariograms are small, allowing one to take advantage of a recent results of Xie and others which proceeds by diagonalizing the variogram matrix function over the lag classes.  相似文献   

5.
In the linear model of coregionalization (LMC), when applicable to the experimental direct variograms and the experimental cross variogram computed for two random functions, the variability of and relationships between the random functions are modeled with the same basis functions. In particular, structural correlations can be defined from entries of sill matrices (coregionalization matrices) under second-order stationarity. In this article, modified t-tests are proposed for assessing the statistical significance of estimated structural correlations. Their specific aspects and fundamental differences, compared with an existing modified t-test for global correlation analysis with spatial data, are discussed via estimated effective sample sizes, in relation to the superimposition of random structural components, the range of autocorrelation, the presence of correlation at another structure, and the sampling scheme. Accordingly, simulation results are presented for one structure versus two structures (one without and the other with autocorrelation). The performance of tests is shown to be related to the uncertainty associated with the estimation of variogram model parameters (range, sill matrix entries), because these are involved in the test statistic and the degrees of freedom of the associated t-distribution through the estimated effective sample size. Under the second-order stationarity and LMC assumptions, the proposed tests are generally valid.  相似文献   

6.
Coregionalization analysis has been presented as a method of multi-scale analysis for multivariate spatial data. Despite an increasing use of this method in environmental and earth sciences, the uncertainty associated with the estimation of parameters in coregionalization analysis (e.g., sills and functions of sills) is potentially high and has not yet been characterized. This article aims to discuss the theory underlying coregionalization analysis and assess the robustness and limits of the method. A theoretical framework is developed to calculate the ergodic and fluctuation variance-covariance matrices of least-squares estimators of sills in the linear model of coregionalization. To adjust for the positive semidefiniteness constraint on estimated coregionalization matrices, a confidence interval estimation procedure for sills and functions of sills is presented. Thereafter, the relative importance of uncertainty measures (bias and variance) for sills and structural coefficients of correlation and determination is assessed under different scenarios to identify factors controlling their uncertainty. Our results show that the sampling grid density, the choice of the least-squares estimator of sills, the positive semidefiniteness constraint, the presence of scale dependence in the correlations, and the number and range of variogram models, all affect the level of uncertainty, sometimes through multiple interactions. The asymptotic properties of variogram model parameter estimators in a bounded sampling domain impose a theoretical limit to their accuracy and precision. Because of this limit, the uncertainty was found to be high for several scenarios, especially with three variogram models, and was often more dependent on the ratio of variogram range to domain extent than on the sampling grid density. In practice, in the coregionalization analysis of a real dataset, the circular requirement for sill estimates in the calculation of uncertainty measures makes the quantification of uncertainty very problematic, if not impossible. The use of coregionalization analysis must be made with due knowledge of the uncertainty levels and limits of the method.  相似文献   

7.
Coregionalization analysis has been presented as a method of multi-scale analysis for multivariate spatial data. Despite an increasing use of this method in environmental and earth sciences, the uncertainty associated with the estimation of parameters in coregionalization analysis (e.g., sills and functions of sills) is potentially high and has not yet been characterized. This article aims to discuss the theory underlying coregionalization analysis and assess the robustness and limits of the method. A theoretical framework is developed to calculate the ergodic and fluctuation variance-covariance matrices of least-squares estimators of sills in the linear model of coregionalization. To adjust for the positive semidefiniteness constraint on estimated coregionalization matrices, a confidence interval estimation procedure for sills and functions of sills is presented. Thereafter, the relative importance of uncertainty measures (bias and variance) for sills and structural coefficients of correlation and determination is assessed under different scenarios to identify factors controlling their uncertainty. Our results show that the sampling grid density, the choice of the least-squares estimator of sills, the positive semidefiniteness constraint, the presence of scale dependence in the correlations, and the number and range of variogram models, all affect the level of uncertainty, sometimes through multiple interactions. The asymptotic properties of variogram model parameter estimators in a bounded sampling domain impose a theoretical limit to their accuracy and precision. Because of this limit, the uncertainty was found to be high for several scenarios, especially with three variogram models, and was often more dependent on the ratio of variogram range to domain extent than on the sampling grid density. In practice, in the coregionalization analysis of a real dataset, the circular requirement for sill estimates in the calculation of uncertainty measures makes the quantification of uncertainty very problematic, if not impossible. The use of coregionalization analysis must be made with due knowledge of the uncertainty levels and limits of the method.  相似文献   

8.
Although there are multiple methods for modeling matrix covariance functions and matrix variograms in the geostatistical literature, the linear coregionalization model is still widely used. In particular it is easy to check to ensure whether the matrix covariance function is positive definite or that the matrix variogram is conditionally negative definite. One of the difficulties in using a linear coregionalization model is in determining the number of basic structures and the corresponding covariance functions or variograms. In this paper, a new procedure is given for identifying the basic structures of the space–time linear coregionalization model and modeling the matrix variogram. This procedure is based on the near simultaneous diagonalization of the sample matrix variograms computed for a set of spatiotemporal lags. A case study using a multivariate spatiotemporal data set provided by the Environmental Protection Agency of Lombardy, Italy, illustrates how nearly simultaneous diagonalization of the empirical matrix variograms simplifies modeling of the matrix variograms. The new methodology is compared with a previous one by analyzing various indices and statistics.  相似文献   

9.
《Mathematical Geology》1997,29(6):779-799
Generalized cross-covariances describe the linear relationships between spatial variables observed at different locations. They are invariant under translation of the locations for any intrinsic processes, they determine the cokriging predictors without additional assumptions and they are unique up to linear functions. If the model is stationary, that is if the variograms are bounded, they correspond to the stationary cross-covariances. Under some symmetry condition they are equal to minus the usual cross-variogram. We present a method to estimate these generalized cross-covariances from data observed at arbitrary sampling locations. In particular we do not require that all variables are observed at the same points. For fitting a linear coregionalization model we combine this new method with a standard algorithm which ensures positive definite coregionalization matrices. We study the behavior of the method both by computing variances exactly and by simulating from various models.  相似文献   

10.
The linear model of coregionalization (LMC) is generally fit to multivariate geostatistical data by minimizing a least-squares criterion. It is commonly believed that weighting the criterion by inverse variances will reduce the influence of those variables with large variance. We point out that this need not be so, and that in some cases the weights will have no effect whatsoever on the estimated sill matrices. When there is an effect, it is due not to a reduction of these variables’ influence, but rather due to a lack of invariance of the minimization problem; moreover, sometimes the influence may actually increase. The correct way to reduce influence is to fit the LMC after standardizing the variables to have unit variance.  相似文献   

11.
On the Equivalence of the Cokriging and Kriging Systems   总被引:2,自引:0,他引:2  
Simple cokriging of components of a p-dimensional second-order stationary random process is considered. Necessary and sufficient conditions under which simple cokriging is equivalent to simple kriging are given. Essentially this condition requires that it should be possible to express the cross-covariance at any lag series h using the cross-covariance at |h|=0 and the auto-covariance at lag series h. The mosaic model, multicolocated kriging and the linear model of coregionalization are examined in this context. A data analytic method to examine whether simple kriging of components of a multivariate random process is equivalent to its cokriging is given  相似文献   

12.
Under the intrinsic coregionalization model if both primary and secondary measurements are available at all sample locations, the conventional geostatistical wisdom is that cokriging provides exactly the same solution as univariate kriging on the primary process alone. However, recent eamples have been given where nonzero secondary cokriging weights have accurred under this spatial dependence structure. This note identifies the conditions under which secondary information is useful under the assumption of intrinsic coregionalization. An illustration is given using a dataset of plutonium and americium concentrations collected from a region of the Nevada Test Site.  相似文献   

13.
The study described herein concerns the application of geostatistical methods to data soil from Montemor-O-Novo area (Southern Portugal). In the area, the gold mineralised zones (Banhos, Caeiras, Falés, Gamela, Malaca and Monfurado) are characterised by different geological settings and mineralogical assemblages. A total of 1211 soil samples were collected in Montemor-O-Novo area and analysed for Cu, Pb, Zn, As, Ba and Au by atomic absorption spectrometry.To account for spatial structure, simple and cross variograms were computed for the main directions of the grid sampling. From the experimental variograms a linear model of coregionalization composed of three structures, a nugget effect and two anisotropic spherical structures, was fitted to each of the six variables. The coregionalization matrices deduced from the theoretical model show the relationships between the variables at different scales. These matrices were compared with those obtained by principal component analysis (PCA).This methodology was the basis for estimating the corresponding spatial components (Y0, Y1 and Y2) using factorial kriging analysis (FKA). Maps of raw data, Y0, Y1 and Y2 were made for each variable.The use of multivariate analysis permit the study of the spatial structure intrinsic to geochemical data and the identification and refinement of significant anomalies related to Au-bearing mineral deposits.  相似文献   

14.
In this paper, we propose a new methodology to automatically find a model that fits on an experimental variogram. Starting with a linear combination of some basic authorized structures (for instance, spherical and exponential), a numerical algorithm is used to compute the parameters, which minimize a distance between the model and the experimental variogram. The initial values are automatically chosen and the algorithm is iterative. After this first step, parameters with a negligible influence are discarded from the model and the more parsimonious model is estimated by using the numerical algorithm again. This process is iterated until no more parameters can be discarded. A procedure based on a profiled cost function is also developed in order to use the numerical algorithm for multivariate data sets (possibly with a lot of variables) modeled in the scope of a linear model of coregionalization. The efficiency of the method is illustrated on several examples (including variogram maps) and on two multivariate cases.  相似文献   

15.
The geostatistical analysis of multivariate data involves choosing and fitting theoretical models to the empirical matrix. This paper considers the specific case of the model of linear coregionalization, and describes an automated procedure for fitting models, that are adequate in the mathematical sense, using a least-squares like technique. It also describes how to decide whether the number of parameters of the cross-variogram matrix model should be reduced to improve stability of fit. The procedure is illustrated with an analysis of the spatial relations among the physical properties of an alluvial soil. The results show the main influence of the scale and the shape of the basic models on the goodness of fit. The choice of the number of basic models appears of secondary importance, though it greatly influences the resulting interpretation of the coregionalization analysis.  相似文献   

16.
The application of kriging-based geostatistical algorithms to integrate large-scale seismic data calls for direct and cross variograms of the seismic variable and primary variable (e.g., porosity) at the modeling scale, which is typically much smaller than the seismic data resolution. In order to ensure positive definiteness of the cokriging matrix, a licit small-scale coregionalization model has to be built. Since there are no small-scale secondary data, an analytical method is presented to infer small-scale seismic variograms. The method is applied to estimate the 3-D porosity distribution of a West Texas oil field given seismic data and porosity data at 62 wells.  相似文献   

17.
Two different Markov models for cross-covariance and coregionalization modeling are proposed and compared in cokriging and stochastic simulation modes. The newly introduced Markov model 2 performs better in cases where the secondary data are defined on a larger support volume than the primary variable being estimated or simulated. Incorrect adoption of the more traditional Markov model 1 may result in cokriging estimated maps that are artificially too close to the secondary data map and in simulated realizations with too high nugget effect.  相似文献   

18.
This paper is concerned with vector random fields on spheres with second-order increments, which are intrinsically stationary and mean square continuous and have isotropic variogram matrix functions. A characterization of the continuous and isotropic variogram matrix function on a sphere is derived, in terms of an infinite sum of the products of positive definite matrices and ultraspherical polynomials. It is valid for Gaussian or elliptically contoured vector random fields, but may not be valid for other non-Gaussian vector random fields on spheres such as a χ 2, log-Gaussian, or skew-Gaussian vector random field. Some parametric variogram matrix models are derived on spheres via different constructional approaches. A simulation study is conducted to illustrate the implementation of the proposed model in estimation and cokriging, whose performance is compared with that using the linear model of coregionalization.  相似文献   

19.
Soil pollution data collection typically studies multivariate measurements at sampling locations, e.g., lead, zinc, copper or cadmium levels. With increased collection of such multivariate geostatistical spatial data, there arises the need for flexible explanatory stochastic models. Here, we propose a general constructive approach for building suitable models based upon convolution of covariance functions. We begin with a general theorem which asserts that, under weak conditions, cross convolution of covariance functions provides a valid cross covariance function. We also obtain a result on dependence induced by such convolution. Since, in general, convolution does not provide closed-form integration, we discuss efficient computation. We then suggest introducing such specification through a Gaussian process to model multivariate spatial random effects within a hierarchical model. We note that modeling spatial random effects in this way is parsimonious relative to say, the linear model of coregionalization. Through a limited simulation, we informally demonstrate that performance for these two specifications appears to be indistinguishable, encouraging the parsimonious choice. Finally, we use the convolved covariance model to analyze a trivariate pollution dataset from California.  相似文献   

20.
Coregionalization by Linear Combination of Nonorthogonal Components   总被引:1,自引:0,他引:1  
This paper applies the relationship between the matrix multivariate covariance and the covariance of a linear combination of a single attribute to analyze modeling with nested structures. This analysis for modeling of covariances is introduced to the multivariate case for nonorthogonal vector spatial components. Results validate the classic linear model of coregionalization for a more general case of nonorthogonality, that produces additional terms including cross-covariance in the nested structures. Linear combinations of nested structures have been applied in the frequency domain to a more general case where the coefficients are nonconstant but valid transfer functions. This allows for a tool for the production of cross-covariance and covariance models that are convolutions of valid models. An example for modeling of the hole effect is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号