首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Granulite-facies xenoliths from an Upper Devonian lamprophyre dyke near Tangier, Nova Scotia, provide new information about the lower crust in the Meguma Zone. Two mineralogically and chemically distinet groups of xenoliths occur. Both groups contain quartz+feldspar+biotite+Fe–Ti oxides+sulfides. In addition, group A contains garnet+graphite±[aluminosilicates+spinel±sapphirine (hight Al2O3 subgroups A1 and A2)] or [clinopyroxene+sphene+apatite (high CaO sub-group A3)]. Group B has highly variable proportions of orthopyroxene (B1), clinopyroxene (B2), and amphibole (B3). Trace-element contents of the highly aluminous xenoliths compare closely with average to upper crustal model compositions and are similar in many aspects to other undepleted granulite-facies rocks. LowP-T sedimentary assemblages of quartz-chlorite-clay minerals-calcite-albite or paragonite can account for the compositions of group A xenoliths. Within group B, a high-MgO (MgO>13 wt%) subgroup with high transition-metal contents, and low-MgO (MgO<9 wt%) sub-groups with higher LIL (large-ion-lithophile) element contents exist. Although the rare-earth and high-field-strength elements indicate a tholeiitic or low-K calc-alkaline chemistry, the LIL elements are as high as those from high-K calc-alkaline volcanic are rocks. Isotopically, group A ranges from Ndt=-2.56 to-0.80 and87Sr/86Sr t =0.7046 to 0.7182 fort=370 Ma. For group B these values are +1.45 to +5.33 and 0.7028 to 0.7048, respectively. Model ages (TCHUR) are correspondingly low and are tightly constrained (544±52 Ma). These young ages contrast with the middle Proterozoic Nd model ages of the overlying Meguma Zone low-grade flysch. This time-inverted stratigraphy appears to be the product of a tectonic break between a younger autochthonous Tangier lower crust (Avalon), and an older allochthonous Meguma Group upper crust.  相似文献   

2.
Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio   总被引:2,自引:0,他引:2  
The partitioning of Cr and Al between coexisting spinel and clinopyroxene and the dependence of spinel-cpxgarnet equilibria on Cr/Al ratio have been investigated by a combination of phase equilibrium experiments, high temperature solution calorimetry and thermodynamic calculations.The exchange equilibrium: has a measured enthalpy change for pure phases of –2,100±500 cal at 970 K and 1 atm. Experimental reversals of Cr-Al partitioning between the spinel and clinopyroxene phases yield the following partitioning relationship: where X i j refers to atomic fraction of i in the octahedral sites of phase j. The compositional dependence of partitioning implies that Al-Cr mixing in spinel is nonideal with, on the symmetrical model, a W Cr-Al Sp of 2,700±500 cal/gm. atom. In contrast, aluminum-chromium mixing in clinopyroxene is close to ideal.The measured stability field of knorringite (Mg3Cr2Si2O12) and mixing properties of garnet have been used in conjunction with our experimental data to calculate the influence of Cr/Al ratio on the important reaction: orthopyroxene+clinopyroxene+spinel=olivine+garnetThe stability field of spinel lherzolite increases by about 2.8 Kb for every increase of 0.1 in Cr/(Cr+Al) ratio up to Cr/(Cr+Al) of 0.7. The calculated stabilization is in very good agreement with the experimental results of O'Neill (1981). The partitioning relationships are such that, at the low ratios of Cr/Al (0.07) of primitive lherzolite, clinopyroxene buffers spinel composition and sharpens the spinelgarnet reaction interval from 10 Kb (little or no clinopyroxene) down to about 2 Kb in pyroxene-rich pyrolite.  相似文献   

3.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

4.
Eclogite xenoliths from the mantle have experienced a wide variety of processes and P-T conditions, many of which are recorded in the mineral compositions and textures. Exsolution of garnet from clinopyroxene is one such texture, occurring in a minority of mantle eclogites. New analyses of clinopyroxene and garnet of eclogite xenoliths from kimberlites at Bellsbank (South Africa) and Obnazhënnaya (Yakutia, Russia) are presented here, and these are combined with data from the literature. Exsolution of garnet from clinopyroxene is generally lamellar, although lens-shaped garnets are also present. Major- and trace-element characteristics show a wide range of compositions and include eclogite Groups A, B, and C. Rare-earth element (REE) concentrations of garnet and pyroxene were determined by SIMS, and the REE patterns are subtly different from those in ordinary eclogites. Differences include the absence of prominent Eu anomalies in samples of this study and differences in the slopes of chondrite-normalized REE patterns. It is possible that these signatures are unique to exsolved eclogites, a result of subsolidus elemental partitioning during exsolution. Some reconstructed whole-rock compositions are aluminuous; comparison with ordinary eclogites shows only minor differences, implying a similar origin. If the immediate precursor to the exsolved eclogites was a monomineralic pyroxenite, the excess aluminium was tied up in Tschermak's molecule, although the occasional presence of kyanite exsolution lamellae is indicative of a Ca-Eskola component. Reconstructed pyroxenes from kyanite- and corundum-rich samples contain unrealistic amounts of aluminium for mantle pyroxenes. A protolith (or parental pyroxene) threshold of 24% Al2O3 may exist, above which (as in a plagioclase cumulate) the final assemblage is kyanite- and/or corundum-bearing.  相似文献   

5.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

6.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151–173–68 2, where is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual crossover at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On 18O-olivinevs. 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.Contribution No. 3978, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

7.
Samples located near the Oregon Dome anorthosite massif in the south-central Adirondack Mountains, New York contain the fluid-buffering mineral assemblages: amphibole + clinopyroxene + orthopyroxene + quartz or biotite + quartz + orthopyroxene + K-feldspar. These rocks were metamorphosed under granulite-facies conditions (T=725°–750°C, P=7.5 kbar) during the Grenville orogeny. The Mg-rich nature of amphiboles, micas, and pyroxenes allow accurate calculation of water activities because corrections for the effects of solid solution are relatively small. The activity of water was low during the peak of granulite-facies metamorphism, with H2O0.15±0.14. Wollastonite occurrences indicate that the CO2 was low (<0.3) in nearby rocks, demonstrating that large quantities of CO2 did not infiltrate in a pervasive manner. The combination of low H2O with low CO2 is consistent with the hypothesis that magmatic processes were dominant, generating dry, fluid-absent conditions.Abbreviations fi Fugacity of species i in a fluid - Xi mole fraction of component i in a phase - T temperature - P lithostatic pressure - P F fluid pressure - i x activity of component i phase X  相似文献   

8.
Assuming that the partial molar volume of each chemical component in a magma is constant, the magma density, m , is expressed as 1/ m =C i / fi , whereC i is the weight fraction, and fi is the fractionation density of thei th component. Using this linear relationship between 1/ and weight fraction, the density change due to addition or subtraction of any component can be graphically estimated on 1/ vs oxide wt% diagrams. The compositional expansion coefficient of thei th component, fi , is expressed as i = m / fi –1. The compositional expansion coefficient of H2O has a much larger absolute value than those of any other oxide or mineral components, showing that addition of a small amount of H2O can significantly decrease magma density. These simple expressions facilitate the estimation of magma densities during fractionation.  相似文献   

9.
New experimental data on compositions of garnets in two-pyroxene — garnet assemblages in the system CaO –MgO –Al2O3 –SiO2 (CMAS) are presented for conditions between 1,100 and 1,570° C and 30 to 50 kb. Garnets in these assemblages become less calcic with increasing pressure. Garnet-orthopyroxene barometry (Al-solubility-barometry) pertinent to geobarometry for garnet lherzolites has been evaluated with a set of experimental data covering the range 900 to 1,570° C and 15 to 100 kb. Various formulations of this barometer work well to 75 kb. Phase equilibria are not sufficient to positively verify the thermodynamic validity of any of such models. Empirical garnet-orthopyroxene barometry at least in the system CMAS can be formulated to obtain a pressure estimate without previous temperature estimation (P(kb)=34.4-19.175 1n X Al M1 +17.702 1n X Ca M2 ). The potential application of an analogous garnetclinopyroxene equilibrium is limited because the amount of Ca-Tschermaks in natural clinopyroxenes is usually quite small in garnet lherzolites and many eclogites. The Ca-Mg exchange between garnet and clinopyroxene appears however sufficiently sensitive to pressure to allow calibration of a CMAS barometer. The reaction 3CaMgSi2O6+Mg3Al2Si3O12=3Mg2Si2O6+Ca3Al2Si3O12 has a V o of 3.5 cm3. The total pressure dependency of this reaction is however closer to a theoretical V o of about 5 cm3 when excess volume properties of the phases involved are taken into account. We have calibrated such a barometer (mean error of estimate 2.8 kb) for assemblages with pyrope-rich (py>80) garnets and orthopyroxenes. This may provide the basis for a geobarometer for eclogites from kimberlites.Abbreviations Used in the Text CaTs Ca-tschermak's molecule, CaAl2SiO6 - cpx clinopyroxene - di diopside, CaMgSi2O6 - en enstatite, Mg2Si2O6 - gr grossular, Ca3Al2Si3O12 - gt garnet - MgTs Mg-Tschermak's molecule, MgAl2SiO6 - opx orthopyroxene - px pyroxene - py pyrope, Mg3Al2Si3O12 - a i j activity of component i in phase j - activity coefficient - G(I) molar Gibbs free energy difference of reaction (I) at standard state unless specified otherwise - H(I), (H I) molar enthalpy (difference) of phase (reaction) (I) at standard state unless specified otherwise - S (I), (S I) molar entropy (difference) of phase (reaction) (I) at standard state unless specified otherwise - V o, (V I o) molar volume (difference) of phase (reaction) (I) at standard state - X i j mole fraction of component i in phase j  相似文献   

10.
The abundance of coexisting structural units in K-, Na-, and Li-silicate melts and glasses from 25° to 1654°C has been determined with in-situ micro-Raman spectroscopy. From these data an equilibrium constant, Kx, for the disproportionation reaction among the structural units coexisting in the melts, Si2O5(2Q3)SiO3(Q2)+SiO2(Q4), was calculated (Kx is the equilibrium constant derived by using mol fractions rather than activities of the structural units). From ln Kx vs l/T relationships the enthalpy (Hx) for the disproportionation reaction is in the range of-30 to 30 kJ/mol with systematic compositional dependence. In the potassium and sodium systems, where the disproportionation reaction shifts to the right with increasing temperature, the Hx increases with silica content (M/Si decreases, M=Na, K). For melts and supercooled liquids of composition Li2O·2SiO2 (Li/Si=1), the Hx is indistinguishable from 0. By decreasing the Li/Si to 0.667 (composition LS3) and beyond (e.g., LS4), the disproportionation reaction shifts to the left as the temperature is increased. For a given ratio of M/Si (M=K, Na, Li), there is a positive, near linear correlation between the Hx and the Z/r2 of the metal cation. The slope of the Hx vs Z/r2 regression lines increases as the system becomes more silica rich (i.e., M/Si is decreased). Activity coefficients for the individual structural units, i, were calculated from the structural data combined with liquidus phase relations. These coefficients are linear functions of their mol fraction of the form i=a lnX i+b, where a is between 0.6 and 0.87, and X i is the mol fraction of the unit. The value of the intercept, b, is near 0. The relationship between activity coefficients and abundance of individual structural units is not affected by temperature or the electronic properties of the alkali metal. The activity of the structural units, however, depend on their concentration, type of metal cation, and on temperature.  相似文献   

11.
In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of 18O is as a sensitive indicator of contamination, either at the start of differentiation ( 18Oinit) or as a proportion of fractionation in AFC. Plots of 18O vs SiO2-allow to determine initial 18O values for different sequences for source comparison. For NBS-28=9.60, the 18O at 48% SiO2-varies between a high 6.4 for Kiglapait (Kalamarides 1984), 5.9 for Transhimalaya, 5.8 for Hachijo-Jima (Matsuhisa 1979), 5.6 for Koloula (Chivas et al. 1982) and a low 5.3 for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the Ladakh-Lhasa terrane, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous ( 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low- 18O (5.0–0) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya 18O trend line, but the distribution of low total rock or feldspar 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.  相似文献   

12.
Summary The mineral trigonite crystallizes in the monoclinic space groupPn–C s 2 witha 0=7.26,b 0=6.78,c 0=11.09Å; =91.5°,Z=2. The structure was determined from 1250 X-ray intensities collected on an automatic two circle Weissenberg-type diffractometer. The final residual isR=6.5% using anisotropic temperature factors for Pb, Mn and As, and isotropic temperature factors for O.The structure consists of MnO6 octahedra, sharing all six oxygens with arsenite groups to form a framework. The Pb atoms are attached to this framework with Pb–O distances2.23Å. One oxygen, bound only to an As atom, is interpreted as the donor for a hydrogen bond of 2.75Å.
Die Kristallstruktur des Trigonits, Pb3Mn(AsO3)2(AsO2OH)
Zusammenfassung Das Mineral Trigonit kristallisiert monoklin, RaumgruppePn–C s 2 ,a 0=7,26,b 0=6,78,c 0=11,09Å; =91,5°;Z=2. Die Strukturermittlung erfolgte anhand von 1250 Röntgenintensitäten, die auf einem automatischen Zweikreis-Weissenbergdiffraktometer gesammelt wurden. Mit anisotropen Temperaturfaktoren für Pb, Mn und As sowie isotropen für die O-Atome ergibt sich einR-Wert von 6,5%.Die MnO6-Oktaeder werden über die sechs Sauerstoffe mit Arsenitgruppen zu einem dreidimensionalen Gerüst verknüpft. Über Pb-O-Abstände2,23 Å sind die Pb-Atome in dieses Gerüst eingebaut. Ein Sauerstoff, nur an ein As-Atom gebunden, wird als Donator einer H-Brücke von 2,75 Å interpretiert.


With 2 Figures  相似文献   

13.
A new set of reversal experiments for coexisting ortho- and clinopyroxenes in the system CMAS at conditions between 1,000–1,570° C and 30 to 50 kb is presented and combined with literature data. Pyroxene behaviour, particularly that of clinopyroxene, is very complicated and different styles of Al incorporation into the pyroxene structure for low and high concentrations of Al are indicated, strongly influencing the exchange of the enstatite component between ortho- and clinopyroxene. Thermodynamic modelling of this exchange is problematic because of the large number of unknown coefficients compared to the number of experiments. Thermometry based on such models becomes very dependent on accuracy of experimental data and analyses of small quantities of elements. Despite this complexity very simple empirical thermometric equations are capable of reproducing experimental conditions in the systems CMS and CMAS over a wide range of P, T conditions. We derived the equation which gives a mean error of estimate of 25° C when applied to CMS and CMAS data.Abbreviations Used in the Text cpx clinopyroxene - di diopside, CaMgSi2O6 - en enstatite, Mg2Si2O6 - opx orthopyroxene - px Pyroxene - py pyrope - a i j activity of component i in phase j - activity coefficient - G P,T (A) molar Gibbs free energy difference of reaction (A) at P, T - X i j mole fraction of component i in phase j  相似文献   

14.
Iron- and vanadium-bearing kyanites have been synthesized at 900 and 1100° C/20 kb in a piston-cylinder apparatus using Mn2O3/Mn3O4- and MnO/Mn-mixtures, respectively, as oxygen buffers. Solid solubility on the pseudobinary section Al2SiO5-Fe2SiO5(-V2SiO5) of the system Al2O3-Fe2O3(V2O3)-SiO2 extends up to 6.5 mole% (14mole %) of the theoretical end member FeSiO5(V2SiO5) at 900°C/20 kb. For bulk compositions with higher Fe2SiO5 (V2SiO5) contents the corundum type phases M2O3(M = Fe3+, V3+) are found to coexist with the Fe3+(V3+)-saturated kyanite solid solution plus quartz. The extent of solid solubility on the join Al2SiO5-Fe2SiO5 at 1 100°C was not found to be significantly higher than at 900° C. Microprobe analyses of iron bearing kyanites gave no significant indication of ternary solid solubility in these mixed crystals. Lattice constants a 0, b 0, c 0, and V0 of the kyanite solid solutions increase with increasing Fe2SiO5- and V2SiO5-contents proportionally to the ionic radii of Fe3+ and V3+, respectively, the triclinic angles ,, remain constant. Iron kyanites are light yellowish-green, vanadium kyanites are light green. Iron kyanites, (Al1.87 Fe 0.13 3+ )SiO5, were obtained as crystals up to 700 m in length.  相似文献   

15.
The oxygen isotope compositions of coesite, sanidine, kyanite, clinopyroxene and garnet were measured in an ultra-high pressure-temperature grospydite from the Roberts Victor kimberlite, South Africa. The 18O values (per mil v. SMOW) of each phase and (1 ) are as follows: coesite, 8.62 (0.31); sanidine, 8.31 (0.02); kyanite, 7.98 (0.08); pyroxene, 7.63 (0.11); garnet, 7.53 (0.03). In situ analyses of the coesite with the laser extraction system are 18O=9.35 (0.08), n=4, demonstrating that the coesite is homogeneous. The coesite has partially inverted to polycrystalline quartz and the pyroxene is extensively altered during uplift. The larger scatter for the mineral separate coesite and pyroxene data may be due to partial reequilibration between the decompression-related breakdown products of these two phases. The anomalously high 18O value of the grospydite (18Owholerock=7.7) is consistent with altered oceanic crust as a source rock. Temperature estimates from a linear regression of all the data to three different published calibrations correspond to an equilibrium temperature of 1310±80°C. The calculated isotopic pressure effect is to lower these estimates by about 40°C at 40 kb. The estimated temperature based on Al–Si disorder in sanidine is 1200±100°C and that from Fe–Mg exchange thermometry between garnet and clinopyroxene is 1100±50°C. Given the large errors associated with thermometry at such high temperatures, it is concluded that the xenolith equilibrated that 1200±100°C. Pressure estimates are 45±5 kb, based on dilution of the univariant equilibria albite = jadeite + coesite and 2 kyanite + 3 diopside = grossular + pyrope + 2coesite. Zoning in the outer 20 m of the feldspar from Ab0.8 to Ab16 indicates rapid decompression to 25 kb or less. The isotopic temperature estimates are the highest ever obtained and combined with the high degree of Al–Si disorder in sanidine require rapid cooling from ultra-high temperatures. It is inferred that the xenolith was sampled at the time of equilibration, providing a point on the upper Cretaceous geotherm in the mantle below South Africa.  相似文献   

16.
DC and AC electrical conductivities were measured on samples of two different crystals of the mineral aegirine (NaFeSi2O6) parallel () and perpendicular () to the [001] direction of the clinopyroxene structure between 200 and 600 K. Impedance spectroscopy was applied (20 Hz–1 MHz) and the bulk DC conductivity DC was determined by extrapolating AC data to zero frequency. In both directions, the log DC – 1/T curves bend slightly. In the high- and low-temperature limits, differential activation energies were derived for measurements [001] of EA 0.45 and 0.35 eV, respectively, and the numbers [001] are very similar. The value of DC [001] with DC(300 K) 2.0 × 10–6 –1cm–1 is by a factor of 2–10 above that measured [001], depending on temperature, which means anisotropic charge transport. Below 350 K, the AC conductivity () (/2=frequency) is enhanced relative to DC for both directions with an increasing difference for rising frequencies on lowering the temperature. An approximate power law for () is noted at higher frequencies and low temperatures with () s, which is frequently observed on amorphous and disordered semiconductors. Scaling of () data is possible with reference to DC, which results in a quasi-universal curve for different temperatures. An attempt was made to discuss DC and AC results in the light of theoretical models of hopping charge transport and of a possible Fe2+ Fe3+ electron hopping mechanism. The thermopower (Seebeck effect) in the temperature range 360 K < T <770 K is negative in both directions. There is a linear – 1/T relationship above 400 K with activation energy E 0.030 eV [001] and 0.070 eV [001]. 57Fe Mössbauer spectroscopy was applied to detect Fe2+ in addition to the dominating concentration of Fe3+.  相似文献   

17.
The relationship between radiometric and biostratigraphic ages is analyzed by local empirical methods and illustrated in chronograms for the mesozoic and paleozoic stages. The chronograms allow estimates for stage boundaries and their errors. Consequently, the ages for epoch boundaries and their errors are discussed which, for several reasons, may not be identical with the age and error of the oldest stage of an epoch.The analysis results in a comparative time scale which could be a compromise between the time scales currently under discussion. A specific feature of the derived time scale is its rather strong cyclicity with periods around 74 (73±1) ma.
Zusammenfassung Alter und Fehlergrenzen für mesozoische und paläozoische Stufengrenzen werden mittels einer lokalen empirischen Schätzmethode neu berechnet. Daraus ergeben sich Schätzungen für die Alter und Fehler der Epochengrenzen, die aus verschiedenen Gründen nicht mit denen derältesten Stufe einer Epoche zusammenfallen.Die Auswertung der Chronogramme führt zu einer vergleichenden Zeitskala, die im wesentlichen einen Kompromi\ zwischen den gegenwärtig gängigen Zeitskalen darstellt. Bemerkenswert ist, da\ die Zeitskala ein hohes Ma\ an Zyklizität aufweist, wobei sich Perioden von 74 (73±1) ma ergeben.

Résumé Les relations entre les âges radiométriques et les âges biostratigraphiques sont analysées par des méthodes locales et empiriques. Elles sont présentées dans des chronogrammes se référant aux étages du MésozoÏque et du PaléozoÏque. Ces chronogrammes permettent d'estimer les limites d'étages et les erreurs de cette estimation. Les âges des limites de systèmes et leurs erreurs sont discutés en conséquence. Pour diverses raisons ils ne sont pas identiques à ceux de l'étage le plus ancien d'un système.L'analyse des chronogrammes aboutit à une échelle de temps comparative qui représente un compromis entre les échelles de temps couramment discutées. Une propriété remarquable de cette échelle est de faire apparaÎtre une cyclicité dont la période est de 74 (73±1) Ma.

- . , . , . , 74 (73 ± 1) .
  相似文献   

18.
The author describes the outcrops and chemico-petrographical characteristics of volcanites as referred to an eruptive centre in the NW of the Island of Pantelleria (Sicilian Channel).The survey carried out on this subject permitted the reconstruction of the particular eruptive mechanism which determined the formation of an endogenous dome.The volcanites in question, quartziferous sodatrachytes, alternate, in their outcrops, with hawaiitic lavas originating from eruptive centres situated in the immediate vicinity.The alternating of basic magmas and acid magmas within a restricted area supplies a further valid evidence for ascribing the origin of the quartziferous sodatrachytes to contact anatexis. On the other hand they have such a particular chemical composition, that cannot be found in other trachytes of orogenic and cratonic zones.
Zusammenfassung Der Verfasser beschreibt das Vorkommen und die petrographisch-chemischen Eigenschaften der Vulkanite eines Ausbruchszentrums im NW-Teil der Insel Pantelleria. Aufgrund dieser Untersuchungen wird der Ausbruchsmechanismus rekonstruiert, der zur Bildung einer geborstenen Staukuppe führte.Die quarzführenden natrontrachytischen Laven dieser Kuppe wechsellagern mit hawaiitischen Vulkaniten, die aus benachbarten Ausbruchszentren stammen.Die abwechselnde Förderung von basischen und sauren Magmen in einem engbegrenzten Gebiet wird als Beweis für eine kontaktanatektische Entstehung der natrontraehytischen Magmen angeführt, deren eigenartige Zusammensetzung überdies von derjenigen der Trachyte aus Orogengebieten grundsätzlich abweicht.

Résumé L'auteur décrit le gisement et les caractères pétrographiques et pétrochimiques des laves d'un centre éruptif dans la partie NO de l'Île de Pantelleria. Sur la base de ces observations il reconstitue le mécanisme éruptif qui a déterminé la formation d'un dôme endogène rompu.Les laves trachytiques sodiques quartzifères du dit dôme se trouvent intercalées dans les produits hawaiitiques provenants de centres éruptifs voisins.Cette alternance d'éruptions basiques et acides est un argument en faveur d'une origine anatectique de contact des magmas trachytiques sodiques qui, en outre, ont une composition minéralogique et chimique très différente de celle des roches trachytiques des régions orogéniques.

Riassunto L'Autore descive la giacitura ed i caratteri chimico-petrografici delle vulcaniti riferibili ad un centro eruttivo posto nella parte Nord-occidentale dell'Isola di Pantelleria (Canale di Sicilia). Le osservazioni condotte su tale argomento hanno consentito la ricostruzione del particolare meccanismo eruttivo che ha determinato la formazione di un edificio vulcanico costituito da una cupola di ristagno.Le vulcaniti in questione, di natura sodatrachitica quarzifera, sono alternate, nella loro giacitura, a lave di tipo hawaiitico provenienti dai centri eruttivi posti nelle immediate vicinanze.L'altemarsi di eruzioni di magmi basici e di magmi acidi entro un'area ristretta fornisce un ulteriore valido elemento per ascrivere ad anatessi di contatto l'origine delle sodatrachiti quarzifere in oggetto, il cui chimismo è daltronde talmente particolare che non trova riscontro in analoghi termini di zone orogeniche e cratoniche.

Pantelleria . . , . , Na- . , . Ha , Na- - .


Dedicated to Professor Dr. A.Rittmann on the occasion of his 75. birthday  相似文献   

19.
Spherical aggregates of carbonaceous matter measuring 0.2 to 1.0 mm in diameter were recently discovered in conglomerates of the Achaean Pietersburg greenstone belt in the Northern Transvaal, South Africa. Identical carbonaceous material, the so-called flyspeck carbon, occurs abundantly in the approximately 2'600 m. y. old sediments of the Witwatersrand Basin and has been considered to represent vegetative diaspores of primitive columnar plants. If this interpretation is correct, the occurrence of fly-speck carbon outside the Witwatersrand Basin indicates that differentiated life-forms also existed in other suitable depository environments and probably appeared earlier than previously thought.
Zusammenfassung Im Nordtransvaal, Südafrika, wurde kürzlich kohlige Substanz in der Form rundlicher Aggregate entdeckt, die Durchmesser von 0,2 bis 1,0 mm besitzen und in Konglomeraten vorkommen, welche zum archaischen Pietersburg Greenstone Belt gehören. Ganz ähnlich ausgebildete kohlige Substanz, das sogenannte fly-speck carbon tritt in den rund 2600 Mio. Jahre alten goldführenden Konglomerathorizonten des Witwatersrand-Beckens verbreitet auf und wird dort als fossile Reste vegetativer Sporen von primitiven Pflanzen gedeutet. Trifft diese Interpretation der rundlichen Kohleaggregate zu, kann aus dem Auftreten von fly-speck carbon im Pietersburg Belt geschlossen werden, daß auch außerhalb des Witwatersrand-Beckens in geeigneten Ablagerungsräumen differenzierte Lebensformen existierten, möglicherweise schon vor der Ablagerung der Wirwatersrand-Sedimente, in denen solche Lebensformen bisher erstmals beschrieben wurden.

Résumé Des agrégats spheriques de matière carbonée mesurant de 0.2 à 1.0 mm de diamètre ont été récemment découverts dans des conglomérats du Pietersburg Greenstone Belt d'âge archéen dans le Transvaal septentrional en Afrique du Sud. Du matériel carboné identique, connu comme »carbone en tâche de mouche« (fly-speck carbon), est abondant dans les sédiments datés de 2'600 m. a. du Bassin du Witwatersrand, et a été interprété comme les restes de spores végétatives de plantes columnaires primitives. Si cette interprétation est correcte, il s'en suit que la présence de »carbone en tâche de mouche« en dehors du Bassin du Witwatersrand indiquerait que des formes végétales différentiées existaient aussi dans d'autres environments de dépôts favorables et qu'elles ont apparu probablement plus tôt qu'on ne l'avait supposé jusqu'à présent.

, , , 0,2 1 , , , , .. «fly-speck carbon», , 2600 , , . , «fly-speck carbon» , , , .
  相似文献   

20.
A new mineralogic geothermometer based on the partitioning of Fe and Mn between garnet and ilmenite has been calibrated by reversal experiments in the P-T range 600–900° C, 2 and 5 kbars and for fO2=QFM. The results constitute a sensitive geothermometer applicable over a broad range of composition and conditions. Garnetilmenite thermometry has advantages relative to existing geothermometers because of its accurate calibration, marked temperature sensitivity and the chemical and structural simplicity of the crystalline solutions involved. Application to natural assemblages reveals that the garnet-ilmenite geothermometer yields temperatures that agree well with other estimates. The reactivity of, and relatively rapid Fe-Mn diffusion in ilmenite may lead to retrograde resetting of high temperature partition values, but these factors may be useful for estimating rock cooling rates. Analysis of the experimental data indicates minor positive deviations from ideality for Fe-Mn garnets and ilmenites. Absolute magnitudes of interaction parameters (W AB) derived from a regression analysis are subject to considerable uncertainty. The partition coefficient is, however, strongly dependent on the difference between solution parameters. These differences are well constrained with a magnitude of W FeMn ilmW FeMn gar 300 cal mol–1. The accuracy and applicability of garnet-ilmenite thermometry will improve with the availability of better thermodynamic data for garnet crystalline solutions.Abbreviations and symbols used in text R universal gas constant (cal/mol/°K) - T absolute temperature (°K or °C) - P pressure (kbars) - V 0 volume change of reaction (1) - H 1, T 0 standard state enthalpy change of reaction (1) at 1 bar and the T of interest, in cal/mole - S T 0 entropy change of reaction (1) at T of interest, in cal/mole/°K - G P,T 0 standard free energy change of reaction (1) at the T and P of interest, in cal/mole - distribution coefficient for Fe-Mn partitioning between garnet and ilmenite - K apparent equilibrium coefficient for reaction (1) - i j activity of component i in phase j - W A-B binary A-B interaction (Margules) parameter - gar garnet - ilm ilmenite - biot biotite - ol olivine - opx orthopyroxene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号