首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of ocean feedback on monsoon variations at 6 and 9.5 kyr Before Present (BP) compared to present-day is investigated by using sets of simulations computed with the IPSL–CM4 ocean–atmosphere coupled model and simulations with the atmospheric model only with the SST prescribed to the present-day simulation for the coupled model. This work is complementary to the study by Marzin and Braconnot (2009) who have analyzed in detail the response of Indian and African monsoons to changes in insolation at 6 and 9.5 kyr BP using the IPSL–CM4 coupled model. The monsoon rainfall was intensified at 6 and 9.5 kyr BP compared to 0 kyr BP as a result of the intensified seasonal cycle of insolation in the Northern Hemisphere. In this paper, the impact of the ocean feedback is analysed for the Indian, East-Asian and African monsoons. The response of the ocean to the 6 and 9.5 kyr BP insolation forcing shares similarities between the two periods, but we highlight local differences and a delay in the response of the surface ocean between 6 and 9.5 kyr BP. The ocean feedback is shown to be positive for the early stage of the African monsoon. A dipole of SST in the tropical Atlantic favouring the earlier build-up of the monsoon in the 6 and 9.5 kyr BP coupled simulations. However, it is strongly negative for the Indian and East Asian monsoons, and of stronger amplitude at 9.5 than at 6 kyr BP over India. In these Asian regions, the convection is more active over the ocean than over the continent during the late monsoon season due to the ocean feedback. The results are consistent with previous studies about 6 kyr BP climate. In addition, it is shown that the ocean feedback is not sufficient to explain the relative amplifications of the different monsoon systems within the three periods of the Holocene, but that the mechanisms such as the effect of the precession on the seasonal cycle of monsoons as discussed in Marzin and Braconnot (2009) are more plausible.  相似文献   

2.
Inter-station Green's functions estimated from ambient noise studies have been widely used to investigate crustal structure. However, most studies are restricted to continental areas and use fundamental-mode surface waves only. In this study, we recover inter-station surface (Scholte-Rayleigh) wave empirical Green's function (EGFs) of both the fundamental- and the first-higher mode using one year of continuous seismic noise records on the vertical component from 28 ocean bottom seismographs deployed in the Quebrada/Discovery/Gofar transform faults region on the East Pacific Rise. The average phase-velocity dispersion of the fundamental mode (period band 2–30 s) and the first-higher mode (period band 3–7 s) from all EGFs are used to invert for the 1-D average, shear-velocity structure in the crust and uppermost mantle using a model-space search algorithm. The preferred shear-velocity models reveal low velocities (4.29 km/s) between Moho and 25 km depth below sea-surface, suggesting the absence of a fast uppermost mantle lid in this young (0–2 Myr) oceanic region. An even more pronounced low-velocity zone, with shear velocities ~3.85 km/s, appears at a depth between 25–40 km below sea-surface. Along with previous results, our study indicates that the shear velocity in the uppermost oceanic mantle increases with increasing seafloor age, consistent with age-related lithospheric cooling.  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987112001041   总被引:1,自引:0,他引:1  
Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth’s history. Their flood basalts and associated intrusions can cause significant release of SO4 and CO2 and consequently, cause major environmental disruptions. Here, we reconstruct the long-term periodic pattern of LIP emplacement and its impact on ocean chemistry and biodiversity from δ34Ssulfate of the last 520 Ma under particular consideration of the preservation limits of LIP records. A combination of cross-wavelet and other time-series analysis methods has been applied to quantify a potential chain of linkage between LIP emplacement periodicity, geochemical changes and the Phanerozoic marine genera record. We suggest a mantle plume cyclicity represented by LIP volumes (V) of V = ?(350–770) × 103 km3 sin(2πt/170 Ma) + (300–650) × 103 km3 sin(2πt/64.5 Ma + 2.3) for t = time in Ma. A shift from the 64.5 Ma to a weaker ~28–35 Ma LIP cyclicity during the Jurassic contributes together with probably independent changes in the marine sulfur cycle to less ocean anoxia, and a general stabilization of ocean chemistry and increasing marine biodiversity throughout the last ~135 Ma. The LIP cycle pattern is coherent with marine biodiversity fluctuations corresponding to a reduction of marine biodiversity of ~120 genera/Ma at ~600 × 103 km3 LIP eruption volume. The 62–65 Ma LIP cycle pattern as well as excursion in δ34Ssulfate and marine genera reduction suggest a not-yet identified found LIP event at ~440–450 Ma.  相似文献   

4.
In this paper we present new data for the Tianquan (TQ) and Dabure (DB) ocean islands in the western segment of the Longmuco–Shuanghu–Lancangjiang suture zone, northern Tibet, including the results of major and trace element analyses, zircon U–Pb dating, and Hf isotope analyses. Our aim was to assess the genesis of these ocean islands and to consider the implications for the tectonic evolution of the region as a whole. Both TQ and DB retain an ocean-island-type double-layered structure comprising a volcanic basement (basalt and andesite) and an oceanic sedimentary cover sequence (conglomerate, limestone, and chert). The basalts and andesites in the TQ and DB are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), yielding chondrite-normalized REE patterns and primitive-mantle-normalized trace element patterns that are similar to those of ocean island basalts. Given the small and generally positive εHf(t) values of the TQ andesites (+ 4.25 to + 6.22) and DB andesites (− 0.59 to + 1.97, mostly > 0), we conclude that the basalts were derived from the partial melting of garnet peridotite in the mantle and that the andesites were formed by fractional crystallization of the mafic parent magma derived from the garnet peridotite mantle. The ascending magmas underwent varying degrees of fractional crystallization but were not contaminated by crustal material. These features indicate that both TQ and DB are typical ocean islands that formed in an ocean basin. Geochemical analyses of cherts from TQ and DB show that they contain terrigenous material, indicating the proximity of a continental margin. The andesites of TQ contain zircons that yield two U–Pb ages of 251 Ma. Given that ages of 246, 247, and 254 Ma had been reported previously, we conclude that TQ formed during the late Permian–Early Triassic. The andesites of DB contain zircons that yield U–Pb ages of 242 and 246 Ma. Taking into account the youngest age of 244 Ma from the DB basalt, we conclude that DB formed during the Middle Triassic. These data, combined with the geological history of the region, indicate that the development of the Longmuco–Shuanghu–Lancangjiang Paleo-Tethys Ocean continued after the early Permian and that the closure of this ocean was diachronous from east to west. The eastern segment of the ocean closed during the Early Triassic; however, the western segment remained at least partially open until the Middle Triassic, although the ocean was relatively small at this time. The ocean finally closed in the Late Triassic.  相似文献   

5.
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.  相似文献   

6.
Late Paleozoic peperites have been identified for the first time at the bottom of Tailegula Formation in West Junggar, China. This finding is significant for the reconstruction of Late Paleozoic evolution in the Junggar region. The peperites form successions up to 500 m thick interbedded with basaltic lava and sedimentary rocks. Four types of peperites are described and interpreted as resulting from basaltic lava bulldozed into wet, unconsolidated sediments at their basal contacts. Zircon LA-ICP-MS U–Pb dating of a tuff lens enclosed by lava showed that the peperites formed in the Late Devonian (ca. 364 Ma). The peperite-bearing units probably formed at a water depth of less than 3 km and are generally undeformed, occurring in continuous stratigraphic sections distributed regionally over a distance of 100 km on either side of the Darbut and Baijiantan ophiolitic belts, in contrast to the highly deformed slices of ophiolite. They demonstrate that the Darbut and Baijiantan ophiolitic belts should not be interpreted as significant plate boundaries and represent the underlying ocean crust uplifted along tectonic lineaments within a continuous shallow remnant ocean basin. The peperites formed during the spreading phase of the remnant ocean basin and represent the final stages of creation of oceanic crust.  相似文献   

7.
The Heilongjiang complex, extending along a suture zone between the Jiamusi and Songliao blocks in Northeast China, is composed mainly of blueschists, greenschists, meta-ultramafic rocks, quartzites, muscovite–albite schists and two-mica schists. Controversy has long surrounded the ages and tectonic settings of mafic rocks from the complex, which are crucial part of the complex. The lithological associations and their major and trace element compositions indicate that the mafic protoliths of the Yilan greenschists can be subdivided into alkali and tholeiitic basalts, which were derived from partial melting of a garnet-bearing and spinel-bearing mixed source, whereas the protoliths of the amphibolites are tholeiitic and were generated from the partial melting of spinel peridotite. Magmatic zircons from a tholeiitic amphibolite sample yielded a 206Pb/238U age of 256 ± 2 Ma, interpreted as its protolithic age. The sample also contains small amounts of older inherited zircons up to 344 Ma, which, together with its origin from shallow lithospheric mantle, indicate that the tholeiitic rocks were generated in a continental rift. The geochemical data suggest that further rifting led to the formation of an ocean between the Jiamusi and Songliao blocks, in which some oceanic islands developed, represented by the alkali basaltic protoliths of the Yilan greenschists. Magmatic zircons from an alkaline greenschist sample yielded a 206Pb/238U age of 162 ± 3.9 Ma, which, together with protolithic age of 141.8 ± 1 Ma previously obtained for the Yilian blueschist, support the model that the ocean between the Jiamusi and Songliao blocks closed at some time after ~ 141 Ma, not earlier at 210–180 Ma as previously considered.  相似文献   

8.
Systematic positive anomalies of Ce, where Ce/Ce* spans 2.1 to 11.4, are present in basalts and rhyolites of a 2.96 Ga submarine volcanic sequence of the Murchison Province, Western Australia. This volcanic sequence is host to a stratabound Cu–Zn deposit that formed on the seafloor from a seawater hydrothermal system. These are true Ce anomalies as Pr/Pr* < 1. In modern oxygenated marine water Ce is sequestered by Mn-oxides and hydroxides, which coprecipitate with Fe-oxides and hydroxides as nodules and crusts on the ocean floor, as well as Fe–Mn chemical sediments from hydrothermal systems at ocean spreading centers. Fe–Mn sediments have positive Ce anomalies and marine water complementary negative anomalies. Such Ce anomalies have not formerly been reported for Archean hydrothermally altered volcanic rocks. These extreme anomalies are attributed to Mn-transport in shallow-circulating oxygenated marine bottom waters peripheral to the deeper, hotter, hydrothermal system from which the Cu–Zn deposit formed, and record an oxygenated marine environment ~ 500 Ma before the so-called great oxidation event at ~ 2.4 Ga. Results for positive Ce anomalies in the Golden Grove volcanic sequence are complementary to negative anomalies in Archean BIF, collectively stemming from particulate scavenging of Ce+ 3 in an oxic water column.  相似文献   

9.
Earthquake nucleation and fracture propagation in deformed rocks generate elastic waves, within acoustic frequencies. Strain-induced acoustic waves appear both in field tectonic structures and in laboratory samples, thus making laboratory acoustic emission (AE) data from load tests suitable to interpret natural seismic processes. However, laboratory tests are commonly run at room temperature, while the natural rocks at the earthquake origin depths are as hot as hundreds of degrees centigrade. We report AE data for thermally and mechanically loaded granites subjected to impact fracture at different temperatures. The energy distribution in the time series of acoustic signals emitted from fine-grained granite fits a power law of the type of the Gutenberg-Richter relationship at temperatures from 20 to 500 C. Medium- and coarse-grained samples behave in this way only within 300 C but show a Poissonian (random) AE energy distribution above 300 C.  相似文献   

10.
《Quaternary Science Reviews》2007,26(7-8):958-978
An extensive study of Late Pleistocene continental slope submarine mass movements was undertaken. Twenty-six well-dated mass movements occurred during the last 45 ka BP in the North Atlantic sector. A latitudinal trend is observed: between 45 and 12 ka BP most events occur in the mid- to low-latitudes, post-12 ka BP high-latitude occurring events dominate. A cluster of events is associated with the Last Glacial sea level lowstand and Termination 1B. Further events are associated with Termination 1A and the Holocene. Prior to 23 ka BP no clear relationship with the ice core atmospheric methane record is observed, in contrast during and following the deglaciation there is a possible relationship with atmospheric methane. High-latitude mass movements are primarily controlled by cyrospheric-induced variations in sedimentation and local sea level. In high latitudes, the glaciation subdues mass movement activity through reduced seisimicity, sediment supply and ocean temperatures. Deglaciation increases the sediment supply, seisimicity and ocean temperatures, thus increasing the likelihood of continental slope failures. For example the Storegga event coincides with high isostatic uplift and postglacial seisimicity, while the Andøya and Trænadjupet events occur before and after the peak rates respectively. In contrast low latitudes experience greater risk of slope failures during glacial periods from falling sea levels, although during the deglacial and interglacial period there is a potential for failure from changes in deposition centres and rates, as well as warming ocean temperatures potentially leading to dissociation of gas hydrates. The ongoing rapid deglaciation of coastal Greenland and Antarctica and consequent rapid input of sediment, isostatic uplift, crustal stress release and warming bottom water temperature at the shelf break will increase the risk of continental slope failure in these regions.  相似文献   

11.
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M > 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.  相似文献   

12.
The Perth Abyssal Plain (PAP), located offshore southwest Australia, formed at the centre of Mesozoic East Gondwana breakup and Kerguelen plume activity. Despite its importance as a direct and relatively undisturbed recorder of this early spreading history, sparse geophysical data sets and lack of geological sampling hamper our understanding of the evolution of the PAP. This study combines new bathymetric profiles across the PAP with petrographic and geochemical data from the first samples ever to be dredged from the flanks of the Dirck Hartog Ridge (DHR), a prominent linear bathymetric feature in the central PAP, to better constrain the formation of the early Indian Ocean floor and the influence of the Kerguelen plume. Seafloor spreading in the PAP initiated at ~ 136 Ma with spreading observed to occur at (half) rates of ~ 35 mm/yr. Changes in spreading rate are difficult to discern after the onset of the Cretaceous Quiet Zone at ~ 120 Ma, but an increase in seafloor roughness towards the centre of the PAP likely resulted from a half-spreading rate decrease from 35 mm/yr (based on magnetic reversals) to ~ 24 mm/yr at ~ 114 Ma. Exhumed gabbro dredged from the southernmost dredge site of the DHR supports a further slowdown of spreading immediately prior to full cessation at ~ 102 Ma. The DHR exhibits a high relief ridge axis and distinctive asymmetry that is unusual compared to most active or extinct spreading centres. The composition of mafic volcanic samples varies along the DHR, from sub-alkaline dolerites with incompatible element concentrations most similar to depleted-to-normal mid-ocean ridge basalts in the south, to alkali basalts similar to ocean island basalts in the north. Therefore, magma sources and degrees of partial melting varied in space and time. It is likely that the alkali basalts are a manifestation of later excess volcanism, subsequent to or during the cessation of spreading. In this case, enriched signatures may be attributed tectonic drivers and melting of a heterogeneous mantle, or to an episodic influence of the Kerguelen plume over distances greater than 1000 km. We also investigate possible scenarios to explain how lower crustal rocks were emplaced at the crest of the southern DHR. Our results demonstrate the significance of regional tectonic plate motions on the formation and deformation of young ocean crust, and provide insight into the unique DHR morphology.  相似文献   

13.
The crystalline basement of the Tatra Mountains in the Central Western Carpathians, forms part of the European Variscides and contains fragments of Gondwanan provenance. Metabasite rocks of MORB affinity in the Tatra Mountains are represented by two suites of amphibolites present in two metamorphic units (the Ornak and Goryczkowa Units) intercalated with metapelitic rocks. They are interpreted as relics of ocean crust, with zircon δ18OVSMOW values of 4.97–6.96‰. Zircon REE patterns suggest oxidizing to strongly oxidizing conditions in the parent mantle-derived basaltic magma. LA-MC-ICP-MS U-Pb dating of magmatic zircon cores yields a crystallization age of c. 560 Ma, with inherited components at c. 600 Ma, corresponding to the Pannotia break-up event and to the formation of the Eastern Tornquist–Paleoasian Ocean.However, the zircon rims of both suites yield evidence for two different geological histories. Zircon rims from the Ornak amphibolites record two overgrowth phases. The older rims, dated at 387 ± 8 Ma are interpreted as the result of an early stage of Variscan uplift while the younger rims dated at 342 ± 9 Ma are attributed to late Variscan collisional processes. They are characterized by high δ18OVSMOW values of 7.34–9.54‰ and are associated with migmatization related to the closure of the Rheic Ocean.Zircon rims from the Goryczkowa amphibolites yield evidence of metamorphism at 512 ± 5 Ma, subsequent Caledonian metamorphism at 447 ± 14 Ma, followed by two stages of Variscan metamorphism at 372 ± 12 Ma and 339 ± 7 Ma, the latter marking the final closure of the Rheic Ocean during late-Variscan collision.The presented data are the first direct dating of ocean crust formation in the eastern prolongation of the Tornquist Ocean, which formed a probable link to the Paleoasian Ocean.  相似文献   

14.
With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forêts in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.  相似文献   

15.
Blueschists are sporadically exposed as lenses within the Lancangjiang metamorphic complex, and represent unique components of the Paleo-Tethys. In this paper, we present geochemical and geochronological results of blueschists to decipher their origin and tectonic significance. The whole-rock geochemical analyses revealed strong similarities with ocean island basalt (OIB), and further discrimination diagrams confirm an affinity to a within-plate setting. Combined studies on blueschists using cathodoluminescence (CL) imaging, SHRIMP U-Pb dating of zircon domains and 40Ar/39Ar dating of phengite and glaucophane provide evidence of their magmatic origin and metamorphic evolution. Slightly oscillatory zoned or compositionally homogeneous zircon grains/domains, as well as structureless zircon rims, yield ages from 231.6 ± 3.7 to 225.3 ± 4.8 Ma, recording the blueschist facies metamorphic event. In contrast, the captured zircon grains and cores with a major age peak at ~241 Ma as well as several minor older age peaks indicate the multiple provenance of the zircons. 40Ar/39Ar step heating analyses on single grains of phengite and glaucophane separated from blueschists yield plateau ages ranging from 242.5 ± 1.4 to 228.7 ± 1.5 Ma which are interpreted to reflect high-pressure metamorphism.This study provides geochemical and geochronological constraints on the tectonic evolution of the Paleo-Tethyan ocean, which was closed and subsequently subducted as a result of the collision of the Simao and Baoshan Blocks. During subduction in Trassic (243 to 225 Ma), the protoliths of blueschists underwent blueschist facies conditions.  相似文献   

16.
The Karamay area, situated in the eastern part of Western Junggar, Southern Altaids, contains an ophiolitic mélange with ultramafic rocks, gabbro, basalt, chert and limestone, which show typical block-in-matrix structures, and coherent turbidites and tuffs. These lithological associations are interpreted as incoherent and coherent series formed in an accretionary complex. On the basis of detailed field mapping and analyses of the asymmetry of imbricate thrusts, duplexes, tilted structures, shear band cleavages, and the NW-verging inclined to overturned folds, we conclude that the overall movement in the accretionary complex was top-to-the-NW. The youngest tuff involved in the deformation contains detrital zircons that have a U–Pb age (LA-MC ICP-MS) of 308 ± 7 Ma. 39Ar–40Ar resistance furnace step-heating of amphibole separates from a diorite dike, which cuts the folded and imbricated rocks in the accretionary prism, yielded a plateau age of 307 ± 2 Ma. Consequently, the age of the deformation in the prism is tightly constrained at 307–308 Ma, implying that the deformation occurred in an extremely short time-span during SE-ward subduction. Combined contemporaneous occurrence of Baogutu adakite, high-Mg, Sr-enriched and Y-poor dioritic dikes, Miaoergou charnockite, and Maliya mafic rocks, we further suggest the accretionary complex was cut by near-trench volcanic rocks and plutons possibly due to interaction with a spreading ridge.  相似文献   

17.
A distinctive white sediment in the caves of Mulu, Sarawak, Borneo is a well-preserved tephra, representing a fluvially transported surface air-fall deposit, re-deposited inside the caves. We show that the tephra is not the Younger Toba Tephra, formerly considered as most likely. The shards are rod-shaped with elongate tubular vesicles; the largest grains ~ 170 μm in length; of rhyolitic composition; and 87Sr/86Sr ratio of 0.70426 ± 0.00001. U–Th dating of associated calcites suggest that the tephra was deposited before 125 ± 4 ka, and probably before 156 ± 2 ka. Grain size and distance from closest potential source suggests an eruption of VEI 7. Prevailing winds, grain size, thickness of deposit, location of potential sources, and Sr isotopic ratio limit the source to the Philippines. Comparisons with the literature give the best match geochemically with layer 1822 from Ku et al. (2009a), dated by ocean core stratigraphy to 189 ka. This tephra represents a rare terrestrial repository indicating a very substantial Plinian/Ultra-Plinian eruption that covered the Mulu region of Borneo with ash, a region that rarely receives tephra from even the largest known eruptions in the vicinity. It likely will be a valuable chronostratigraphic marker for sedimentary, palaeontological and archaeological studies.  相似文献   

18.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

19.
With the aim of better understanding the history of ocean closure and suturing between India and Asia, we conducted a geologic investigation of a siliciclastic matrix tectonic mélange within the western Yarlung suture zone of southern Tibet (Lopu Range region, ~ 50 km northwest of Saga). The siliciclastic matrix mélange includes abundant blocks of ocean plate stratigraphy and sparse blocks of sandstone. Metapelite and metabasite blocks in the mélange exhibit lower greenschist facies mineral assemblages, indicating that they were not deeply subducted. We obtained detrital zircon U-Pb geochronologic and sandstone petrographic data from sandstone blocks in the mélange and sandstone beds from Tethyan Himalayan strata exposed to the south of the suture. The sandstones from both units are all similar in U-Pb detrital zircon age spectra and petrography to the nearby Tethyan Cretaceous–Paleocene Sangdanlin section, which records the earliest appearance (at ~ 59 Ma) of arc-affinity strata deposited conformably on Indian-affinity strata. Two Paleocene sandstones, one of which is a schistose block incorporated in the siliciclastic matrix mélange, yielded indistinguishable maximum depositional ages of ~ 59 Ma. Mesozoic Asian-affinity sandstone blocks previously documented in the siliciclastic matrix mélange 200–500 km along strike to the east are notably absent in the Lopu Range region. We documented a gradational transition in structural style from the block-in-matrix mélange in the northeast to the south-vergent Tethyan thrust belt in the southwest. Blocks of Tethyan Himalayan strata increase in size and the volumetric proportion of matrix decreases from northeast to southwest. We conclude that no arc-affinity sandstone blocks were incorporated into the subduction complex until India-Asia collision at ~ 59 Ma when the Xigaze forearc basin became overfilled and Tethyan Himalayan strata entered the trench. As collision progressed, there was a gradual transition in structural style from block-in-matrix mélange formation to imbricate-style thrust belt formation.  相似文献   

20.
《Precambrian Research》2006,144(3-4):199-212
LA-ICP-MS U–Pb zircon dating and cathodoluminescene (CL) image analysis were carried out to determine the protolith and metamorphic ages of high-grade Al-rich gneisses, named as “khondalites”, from the Jining Complex of the North China Craton (NCC). The analytical results of more than 200 detrital zircon grains from the khondalites show three main age populations: 2060 Ma, 1940 Ma and 1890 Ma. These data indicate that the provenance of the Jining khondalites is Paleoproterozoic in age, but not Archean as previously suggested, and the sediments were derived from a provenance different from the Eastern Block and the Yinshan Terrane of the NCC. The nearly concordant youngest age of 1842 ± 16 Ma (207Pb/206Pb age) for the detrital zircons is interpreted as the maximum depositional age of the khondalites. Overgrowth rims of detrital zircons yield an age of 1811 ± 23 Ma, which we interpret as the metamorphic age. The new age data are consistent with the recent three-fold tectonic subdivision of the NCC and support that the Eastern and Western Blocks collided at ∼1.8 Ga to form the coherent NCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号