首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the crustal shear wave velocity structure and radial anisotropy along two linear seismic arrays across the North China Craton (NCC) from ambient noise tomography. About a half to one year long ambient noise data from 87 stations were used for obtaining the inter-station surface wave empirical Green's functions (EGFs) from cross-correlation. Rayleigh and Love dispersion curves within the period band 5–30 s were measured from the EGFs of the vertical and transverse components, respectively. These dispersion data were then used to determine the crustal shear wave velocity structure (VSV and VSH) and radial anisotropy (2(VSH ? VSV) / (VSH + VSV)) from point-wise linear inversion with constraints from receiver function analysis. Our results reveal substantial structural variations among different parts of the NCC. The Bohai Bay Basin in the eastern NCC is underlain by a thin crust (~ 30 km) with relatively low velocities (particularly VSV) and large positive radial anisotropy in the middle to lower crust. Such a crustal structure is no longer of a cratonic type and may have resulted from the widespread tectonic extension and intensive magmatism in this region since late Mesozoic. Beneath the Ordos Basin in the western NCC, the crust is relatively thicker (≥ 40 km) and well stratified, and presents a large-scale low velocity zone in the middle to lower crust and overall weak radial anisotropy except for a localized lower crust anomaly. The overall structural features of this region resemble those of typical Precambrian shields, in agreement with the long-term stability of the region. The crustal structure under the Trans North China Orogen (TNCO, central NCC) is more complicated and characterized by smaller scale velocity variations, strong positive radial anisotropy in the middle crust and rapid change to weak-to-negative anisotropy in the lower crust. These features may reflect complex deformations and crust–mantle interactions, probably associated with tectonic extension and magmatic underplating during the Mesozoic to Cenozoic evolution of the region. Our structural images in combination with previous seismic, geological and geochemical observations suggest that the Phanerozoic lithospheric reactivation and destruction processes may have affected the crust (especially the middle and lower crust) of the eastern NCC, and the effect probably extended to the TNCO, but may have minor influence on the crust of the western part of the craton.  相似文献   

2.
This paper presents a numerical procedure to explore how hydraulic conductivity anisotropy and strength anisotropy affect the stability of stratified, poorly cemented rock slopes. The results provide information about the anisotropic characteristics of the medium, including the orientation of bedding planes, the anisotropic ratios of the hydraulic conductivity and the geological significance of the hydraulic conductivity anisotropy on the pore water pressure (PWP) estimation of finite slopes. Neglecting the hydraulic conductivity anisotropy of a slope with horizontal layers leads to a 40% overestimation of the safety factor. For a dip slope with inclined layers with θ = 30°, including the strength anisotropy caused a 25% reduction of the safety factor compared to the cases which isotropic strength is assumed. This paper highlights the importance of the hydraulic-conductivity anisotropy and the strength anisotropy on the stability of stratified, poorly cemented rock slopes.  相似文献   

3.
We explore the variations of Rayleigh-wave phase-velocity beneath the East China Sea in a broad period range (5–200 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 373 interstation paths using vertical-component broad-band waveforms at 32 seismic stations around the East China Sea from 6891 global earthquakes.The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy provide a high resolution model of the lithospheric mantle beneath the East China Sea. The model exhibits four regions with different isotropic and anisotropic patterns: the Bohai Sea, belonging to the North China Craton, displays a continental signature with fast velocities at short periods; the Yellow Sea, very stable unit associated with low deformation, exhibits fast velocities and limited anisotropy; the southern part of the East China Sea, with high deformation and many fractures and faults, is related to slow velocities and high anisotropic signature; and the Ryukyu Trench shows high-velocity perturbations and slab parallel anisotropy.  相似文献   

4.
The mantle structure in Central Asia was investigated by surface-wave tomography from dispersion of the fundamental mode of the Rayleigh wave group velocities along more than 3200 earthquake-station paths within 40° N to 60° N and 80° E to 132° E. The velocities were processed by the frequency-time analysis at periods from 10 to 250 s to obtain their dispersion curves. Then group velocity maps were computed separately for each period, at different sampling intervals: at every 5 s for the short periods from 10 to 30 s, at 10 s for periods between 30 and 100 s, and at 25 s for the longest periods of 100 to 250 s. Resolution was estimated according to the effective averaging radius (R) and presented likewise in the form of maps. To estimate the depths of the revealed inhomogeneties, locally averaged dispersion curves were calculated using the group velocity maps, with reference to the radius R, and were then inverted to S-wave velocity-depth profiles. The resulting three-dimensional S-wave velocity structure to depths of about 700 km revealed large lateral inhomogeneties through the entire depth range. This pattern may be due to the history of the major tectonic structures, as well as to ongoing processes in the mantle.  相似文献   

5.
This paper presents a review of recent results concerning the structure and the rotation of the inner core, as inferred from seismological observations. We first focus on the apparent hemispherical pattern of the inner core structure, observed in both the anisotropy and the heterogeneity of the uppermost layers, whereas isotropic velocities seem to be homogeneous in a broad wavelength domain. Then we present results on the radial variations of the attenuation and its possible anisotropy, for which viscoelasticity and wave scattering provide complementary explanations. Linked to these results is a discussion about the detection of the PKJKP phase, which propagates as S-wave inside the inner core. Finally, the seismological observations of a possible inner core rotation are discussed; recent results seem to favour rotation rates below 0.2° yr?1.  相似文献   

6.
Although orogeny tapers off in western Taiwan large and small earthquakes do occur in the Taiwan Strait, a region largely untouched in previous studies owing mostly to logistical reasons. But the overall crustal structure of this region is of particular interest as it may provide a hint of the proto-Taiwan before the orogeny.By combining time domain empirical Green’s function (TDEGF) from ambient seismic noise using station-pairs and traditional surface wave two-station method (TS) we are able to construct Rayleigh wave phase velocity dispersion curves between 5 and 120 s. Using Broadband Array in Taiwan for Seismology (BATS) stations in Taiwan and in and across the Strait we are able to derive average 1-D Vs structures in different parts of this region. The results show significant shear velocity differences in the upper 15 km crust as expected. In general, the highest Vs in the upper crust observed in the coastal area of Mainland China and the lowest Vs appears along the southwest offshore of the Taiwan Island; they differ by about 0.6–1.1 km/s. For different parts of the Strait, the upper crust Vs structures are lower in the middle by about 0.1–0.2 km/s relative to those in the northern and southern parts. The upper mantle Vs structure (Moho – 150 km) beneath the Taiwan Strait is about 0.1–0.3 km/s lower than the AK135 model. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island. The inversion of seismic velocity structures using shorter period band dispersion data in the sea areas with water depth deeper than 1000 m should take water layer into consideration except for the continental shelves.  相似文献   

7.
Ambient noise analysis in Northern Taiwan revealed obvious lateral variations related to major geological units. The empirical Green’s functions extracted from interstation ambient noise were regarded as Rayleigh waves, from which we analyzed the group velocities for period from 3 to 6 s. According to geological features, we divided Northern Taiwan into seven subregions, for which regionalized group velocities were derived by using the pure-path method. On average, the group velocities in mountain areas were higher than those in the plain areas. We subsequently inverted the S-wave velocity structure for each subregion down to 6 km in depth. Following the analysis, we proposed the first models of geology-dependent shallow S-wave structures in Northern Taiwan. Overall, the velocity increased substantially from west to east; specifically, the mountain areas, composed of metamorphic rocks, exhibited higher velocities than did the coastal plain and basin, which consist of soft sediment. At a shallow depth, the Western Coastal Plain, Taipei Basin, and Ilan Plain displayed a larger velocity gradient than did other regions. At the top 3 km of the model, the average velocity gradient was 0.39 km/s per km for the Western Coastal Plain and 0.15 km/s per km for the Central Range. These S-wave velocity models with large velocity gradients caused the seismic waves to become trapped easily in strata and, thus, the ground motion was amplified. The regionalized S-wave velocity models derived from ambient noises can provide useful information regarding seismic wave propagation and for assessing seismic hazards in Northern Taiwan.  相似文献   

8.
The direction of the Earth's rotation axis with respect to the mantle has been studied for more than a century. The time variation of this direction is generally considered to be the sum of three components: the annual wobble, forced by the atmosphere, the Chandler wobble, a free oscillation with a period of 435 days, and the so-called drift of the mean pole. In the present paper, applying the singular spectrum analysis (SSA) technique, we uncover two more components, with smaller amplitude than the three first ones, but well identified, periodic with periods of 11 and 5.5 years, respectively, undoubtedly linked to solar activity. We interpret them tentatively as the result of an exchange of kinetic angular momentum between the atmosphere, in which a flow would be generated by solar activity, and the mantle. The order of magnitude of the required mean winds in the atmosphere computed in the frame of a schematic model is 1 ms?1, compatible with the observed values of the meridional mean circulation.  相似文献   

9.
We have studied the structures of the Earth’s crust and upper mantle of the Asian continent using a representative sample of dispersion curves of group velocities of fundamental-mode Rayleigh and Love waves for more than 3200 seismic paths. Maps of distributions of variations in group velocities with periods of 10 to 250 s over a spherical surface were calculated by the 2D tomography method. The maps reflect the deep structure of the Earth’s crust and upper mantle of the study area and give a tentative idea of the horizontal distribution of the anisotropic properties of the mantle matter. The obtained data are confirmed by the calculations of the velocity profiles of SV- and SH-waves for the entire Asian continent and for its regions. Vertically, anisotropy is observed to the depths of ~ 250 km, with its maximum in the depth range from the bottom of the crust to 150 km.  相似文献   

10.
This paper presents an analytical solution for undrained elasto-plastic cylindrical cavity expansion in saturated soil under anisotropic initial stress. The problem is formulated by assuming small-strain deformation in the elastic zone and large-strain deformation in the plastic zone. Plastic yielding is determined by the Tresca failure criterion and an associated flow rule. Two stress functions are used to describe the stress state in the two zones around the cavity. The elasto-plastic boundary can subsequently be determined by solving the two stress functions under the stress boundary conditions. Additionally, the cavity pressure-expansion relationship, the total stress and the excess pore pressure around the cavity wall under anisotropic initial stress can be easily obtained by application of a numerical integration. The results show that the cavity pressure and excess pore pressure under the isotropic initial total stress (K = 1) are larger than those under the anisotropic initial stress (K > 1 and K < 1), which is true at all states of the expansion. The higher value of K develops lower stress and pore pressure around the cavity wall at the ultimate states. However, the stress and excess pore pressure are not sensitive to the value of K. The present solution may be used for analyzing the uplift capacity of plate anchors in soils and Horizontal Directional Drilling (HDD) problems such as the tunneling, and pipeline installation.  相似文献   

11.
Based on passive seismic interferometry applied to ambient seismic noise recordings between station pairs belonging to a small-scale array, we have obtained shear wave velocity images of the uppermost materials that make up the Dead Sea Basin. We extracted empirical Green’s functions from cross-correlations of long-term recordings of continuous data, and measured inter-station Rayleigh wave group velocities from the daily correlation functions for positive and negative correlation time lags in the 0.1–0.5 Hz bandwidth. A tomographic inversion of the travel times estimated for each frequency is performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved. Subsequently, the velocity-frequency curves are inverted to obtain S-wave velocity images of the study area as horizontal depth sections and longitude- and latitude-depth sections. The results, which are consistent with other previous ones, provide clear images of the local seismic velocity structure of the basin. Low shear velocities are dominant at shallow depths above 3.5 km, but even so a spit of land with a depth that does not exceed 4 km is identified as a salt diapir separating the low velocities associated with sedimentary infill on both sides of the Lisan Peninsula. The lack of low speeds at the sampling depth of 11.5 km implies that there are no sediments and therefore that the basement is near 10–11 km depth, but gradually decreasing from south to north. The results also highlight the bowl-shaped basin with poorly consolidated sedimentary materials accumulated in the central part of the basin. The structure of the western margin of the basin evidences a certain asymmetry both whether it is compared to the eastern margin and it is observed in north–south direction. Infill materials down to ∼8 km depth are observed in the hollow of the basin, unlike what happens in the north and south where they are spread beyond the western Dead Sea shore.  相似文献   

12.
With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forêts in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.  相似文献   

13.
Inter-station Green's functions estimated from ambient noise studies have been widely used to investigate crustal structure. However, most studies are restricted to continental areas and use fundamental-mode surface waves only. In this study, we recover inter-station surface (Scholte-Rayleigh) wave empirical Green's function (EGFs) of both the fundamental- and the first-higher mode using one year of continuous seismic noise records on the vertical component from 28 ocean bottom seismographs deployed in the Quebrada/Discovery/Gofar transform faults region on the East Pacific Rise. The average phase-velocity dispersion of the fundamental mode (period band 2–30 s) and the first-higher mode (period band 3–7 s) from all EGFs are used to invert for the 1-D average, shear-velocity structure in the crust and uppermost mantle using a model-space search algorithm. The preferred shear-velocity models reveal low velocities (4.29 km/s) between Moho and 25 km depth below sea-surface, suggesting the absence of a fast uppermost mantle lid in this young (0–2 Myr) oceanic region. An even more pronounced low-velocity zone, with shear velocities ~3.85 km/s, appears at a depth between 25–40 km below sea-surface. Along with previous results, our study indicates that the shear velocity in the uppermost oceanic mantle increases with increasing seafloor age, consistent with age-related lithospheric cooling.  相似文献   

14.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

15.
The footwall of the Main Central Thrust (MCT) Zone along the Bhagirathi valley comprises a wide zone of mylonitic quartzite and deep-level tectonites. The systematic variation of finite strain parameters (Es, k and v) in the mylonites indicates heterogeneous deformation, which is determined to vary between, simple shear and non-coaxial flattening type. In such a strain regime the outer boundary of the quartz clasts are no longer preserved thus leading to an error in finite strain measurement.In order to supplement the finite strain studies, Anisotropy of Magnetic Susceptibility (AMS) analyses were carried out on the mylonitic quartzites. A systematic variation in degree of anisotropy (P′) with distance from the MCT is documented and is interpreted to be tectonic in origin. Based on these results it is concluded that P′ can be used as a strain-intensity gauge at least on an outcrop scale, where a systematic variation in P′ values from one part of the outcrop to the other can be established. However, the quantitative relation between principal axes of finite strain ellipsoid and AMS axes, magnitude of principal susceptibility difference (ΔK1 and ΔK3) and finite strain magnitude (ε1=ln 1 + e1 and ε3=ln 1 + e3) were related by a logarithmic relationship with a correlation coefficient of 0.844.  相似文献   

16.
《Gondwana Research》2013,23(3-4):1060-1067
Convergence between the Indian plate and the Eurasian plate has resulted in the uplift of the Tibetan Plateau, and understanding the associated dynamical processes requires investigation of the structures of the crust and the lithosphere of the Tibetan Plateau. Yunnan is located in the southwest edge of the plateau and adjacent to Myanmar to the west. Previous observations have confirmed that there is a sharp transition in mantle anisotropy in this area, as well as clockwise rotations of the surface velocity, surface strain, and fault orientation. We use S receiver functions from 54 permanent broad-band stations to investigate the structures of the crust and the lithosphere beneath Yunnan. The depth of the Moho is found to range from 36 to 40 km beneath southern Yunnan and from 55 to 60 km beneath northwestern Yunnan, with a dramatic variation across latitude 25–26°N. The depth of the lithosphere–asthenosphere boundary (LAB) ranges from 180 km to less than 70 km, also varying abruptly across latitude 25–26°N, which is consistent with the sudden change of the fast S-wave direction (from NW–SE to E–W across 26–28°N). In the north of the transition belt, the lithosphere is driven by asthenospheric flow from Tibet, and the crust and the upper mantle are mechanically coupled and moving southward. Because the northeastward movement of the crust in the Burma micro-plate is absorbed by the right-lateral Sagaing Fault, the crust in Yunnan keeps the original southward movement. However, in the south of the transition belt, the northeastward mantle flow from Myanmar and the southward mantle flow from Tibet interact and evolve into an eastward flow (by momentum conservation) as shown by the structure of the LAB. This resulting mantle flow has a direction different from that of the crustal movement. It is concluded that the Sagaing Fault causes the west boundary condition of the crust to be different from that of the lithospheric mantle, thus leading to crust–mantle decoupling in Yunnan.  相似文献   

17.
We investigated the detailed three-dimensional (3-D) isotropic and anisotropic structures of the crust and upper mantle under the NE Japan forearc region using a large number of P and S wave arrival-time data from onshore and offshore earthquakes. The suboceanic earthquakes used in this study are well relocated using the sP depth phases. We also determined the 3-D distribution of Poisson’s ratio, crack density and saturation rate using the 3-D P and S wave velocity model obtained by this study. The relatively complex anisotropic structures in the megathrust zone may reflect the complex geological structures, lithological variations and fluids in the accretional prism under the forearc region. The tomographic images reflect strong lateral heterogeneities in the megathrust zone under the Tohoku forearc. Areas with low velocity, high Poisson’s ratio, high crack density and high saturation rate may be due to entrapment of fluid-filled, unsolidated sediments on the plate interface close to the Japan Trench. Most of the large megathrust earthquakes since 1900 (M  6.0) and the large 2011 Tohoku-oki earthquakes (M 6.0–9.0) are located in areas with high velocity, high Poisson’s ratio, low crack density and high saturation rate, which may represent strongly-coupled asperities in the megathrust zone resulting from the subducted oceanic ridges and/or seamounts. In contrast, the areas with high Poisson’s ratio may indicate that the fluids have infiltrated into the strongly coupled patches. We think that the great Tohoku-oki earthquakes were caused by not only the stress concentration but also the in situ structural heterogeneities in the megathrust zone.  相似文献   

18.
The chemistry of garnet can provide clues to the formation of skarn deposits. The chemical analyses of garnets from the Astamal Fe-LREE distal skarn deposit were completed using an electron probe micro-analyzer. The three types of garnet were identified in the Astamal skarn are: (I) euhedral coarse-grained isotropic garnets (10–30 mm across), which are strongly altered to epidote, calcite and quartz in their rim and core, with intense pervasive retrograde alteration and little variation in the overall composition (Adr94.3–84.4 Grs8.5–2.7 Alm1.9–0.2) (garnet I); (II) anhedral to subhedral brecciated isotropic garnets (5–10 mm across) with minor alteration, a narrow compositional range along the growth lines (Adr82–65.4 Grs21.9–11.7 Alm11.1–2.4) and relatively high Cu (up to 1997 ppm) and Ni (up to 1283 ppm) (garnet II); and (III) subhedral coarser grained garnets (> 30 mm across) with moderate alteration, weak diffusion and irregular zoning of discrete grossular-almandine-rich domains (Adr84.2–48.8 Grs32.4–7.6 Alm19.9–3.5) (garnet III). In the third type, the almandine content increases with increasing grossular/andradite ratio and increasing substitutions of Al for Fe3 +.Almost all three garnet types have been replaced by fine-grained, dark-brown allanite that is typically disseminated and has the same relief as andradite. The Cu content increases while Ni content decreases slightly towards the rim of garnet II and garnet III. Copper in garnet II is positively correlated with increasing almandine content and decreasing andradite content, indicating that the almandine structure, containing relatively more Fe2 +, is more suitable than andradite and grossular to host divalent cations such as Cu2 +. Nickel in garnet II is positively correlated with increasing andradite content, total Fe, and decreasing almandine content. This is because Ni2 + substitutes for Fe3 + in the Y (octahedral) position. There are unusual discrete grossular-almandine rich domains within andraditic garnet III, indicating the low diffusivity of Ca compared to Fe at high temperatures.  相似文献   

19.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

20.
Sequestration of carbon dioxide in unmineable coal seams is an option to reduce carbon dioxide emissions. It is well known that the interaction of carbon dioxide with unconfined coal induces swelling. This paper contributes three-dimensional strain distribution in confined coal at microstructural level using high-resolution X-ray computerized tomography data and image analysis. Swelling and compression/compaction of regions in the coal matrix occurs with CO2 uptake. Normal strain varies between ? 1.15% and 0.93%, ? 3.11% and 0.94%, ? 0.43% and 0.30% along x, y and z axes respectively. Volumetric strain varies between ? 4.25% and 1.25%. The positive strains reported are consistent with typical range for unconstrained swelling. However, the average volumetric strains value (? 0.34%) reflect overall volume reduction. Overall swelling is apparently influenced by the confining stresses. The magnitudes of normal strains are heterogeneous and anisotropic. The swelling vs. compression/compaction observed after CO2 uptake is localized and likely lithotype dependant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号