首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

2.
We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.  相似文献   

3.
Basaltic dykes of Peninsular Malaysia are confined to the Eastern Belt (Indochina/East Malaya block) as compared with the Western Belt (Sibumasu Block). The dyke intruded through a crustal fracture formed by stress developed from the evolution of two offshore basins (Malay and Penyu basins) east of Peninsular Malaysia. The Ar–Ar dating from the present study combined with the previous geochronological data indicate that the ages of dykes range from 79 ± 2 Ma to 179 ± 2 Ma. Thus it is difficult to correlate the dykes with the closure of Tethys during Permo-Triassic time because of the younger age of the dykes. The majority of the dykes exposed in the Eastern Belt may have been attributed to the difference of crustal thickness between the Eastern and Western belt of Peninsular Malaysia. A thicker Western Belt crust (13 km more than both Eastern and Central belts) is difficult to rupture with normal plate tectonic stress and therefore serves to contain the rise of a mantle derived melt. The chemistry indicates the basalts are olivine to quartz normative and are of the continental within-plate category.  相似文献   

4.
The Late Mesozoic geology of the Lower Yangtze area is characterized by extensional sedimentary basins, numerous granitic plutons and several world-class ore deposits. Regionaly, the coeval tectonic and geodynamic framework remains inadequately investigated. In order to provide a more comprehensive understanding of the regional tectonic context, we performed a multidisciplinary study of the emplacement mechanism of the Qingyang–Jiuhua massif. It consists of the granodioritic Qingyang and the monzogranitic Jiuhua plutons, U–Pb dated at 142 ± 1.0 Ma and 131 ± 2.6 Ma, respectively. Biotite and amphibole cooling ages are 5–8 myr younger. Results deduced from field structural observation, petrographic and magnetic fabrics, paleomagnetism show that this massif was probably vertically emplaced by permissive intrusion coeval with weak regional extension. However, detailed information on the characteristics of this tectonic event and its emplacement depth was not documented. Therefore, we carried out an investigation of amphibole geobarometry and gravity modeling in order to address the emplacement mode of the plutons within their regional tectonic framework. Amphibole data show that the Qingyang–Jiuhua massif was emplaced in the upper crust at a depth between 5 and 12 km. Gravity modeling indicates that the massif is laccolithic. It is characterized by several NE–SW-striking linear thickening zones that we interpret as the feeder roots of the massif. These results led us to conclude that (1) the Qingyang–Jiuhua massif was fed by vertical, NE–SW striking tension gashes; (2) consequently the late Early Cretaceous tectonics in the study area was characterized by NW–SE extension.  相似文献   

5.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

6.
《Gondwana Research》2014,26(4):1644-1659
The formation of a series of intermountain basins is likely to indicate a geodynamic transition, especially in the case of such basins within the central South China Block (CSCB). Determining whether or not these numerous intermountain basins represent a division of the Cretaceous Pan-Yangtze Basin by exhumation of Xuefeng Mountains, is key to understanding the late Mesozoic to early Cenozoic tectonics of the South China Block (SCB). Here we present apatite fission track (AFT) data and time–temperature modeling in order to reconstruct the evolution history of the Pan-Yangtze Basin. Fourteen rock samples were taken from a NE–SW-trending mountain–basin system within the CSCB, including, from west to east, the Wuling Mountains (Wuling Shan), the south and north Mayang basins, the Xuefeng Mountains (Xuefeng Shan) and the Hengyang Basin. Cretaceous lacustrine sequences are well preserved in the south and north Mayang and Hengyang basins, and sporadically crop out in the Xuefeng Mountains, whereas Paleogene piedmont proluvial–lacustrine sequences are only found in the south Mayang and Hengyang basins. AFT results indicate that the Wuling and Xuefeng mountains underwent rapid denudation post-84 Ma, whereas the south and north Mayang basins were more slowly uplifted from 67 and 84 Ma, respectively. Following a quiescent period from 32 to 19 Ma, both the mountains and basins have been rapidly denuded since 19 Ma. Both the AFT data and sedimentary facies changes suggest that the Cretaceous deposits that cover the south–north Mayang and Hengyang basins through to the Xuefeng Mountains define the Cretaceous Pan-Yangtze Basin. Integrating our results with tectonic background for the SCB, we propose that rollback subduction of the paleo-Pacific Plate produced the Pan-Yangtze Basin, which was divided into the south–north Mayang and Hengyang basins by the abrupt uplift and exhumation of the Xuefeng Mountains from 84 Ma to present, apart from a period of tectonic inactivity from 32 to 19 Ma. This late Late Cretaceous to Paleogene denudation resulted from movement on the Ziluo strike–slip fault, which formed due to intra-continental compression most likely associated with the Eurasia–Indian plate subduction and collision. Sinistral transpression along the Ailao Shan–Red River Fault at 34–17 Ma probably transformed this compression to the extrusion of the Indochina Block, and produced the quiescent window period from 32 to 19 Ma for the mountain–basin system in the CSCB. Therefore, the initiation of exhumation of the Xuefeng Mountains at 84 Ma indicates a switch in tectonic regime from Cretaceous extension to late Late Cretaceous and Cenozoic compression.  相似文献   

7.
In this study, receiver function analysis is carried out at 32 broadband stations spread all over the Gujarat region, located in the western part of India to image the sedimentary structure and investigate the crustal composition for the entire region. The powerful Genetic Algorithm technique is applied to the receiver functions to derive S-velocity structure beneath each site. A detail image in terms of basement depths and Moho thickness for the entire Gujarat region is obtained for the first time. Gujarat comprises of three distinct regions: Kachchh, Saurashtra and Mainland. In Kachchh region, depth of the basement varies from around 1.5 km in the eastern part to 6 km in the western part and around 2–3 km in the northern part to 4–5 km in the southern part. In the Saurashtra region, there is not much variation in the depth of the basement and is between 3 km and 4 km. In Gujarat mainland part, the basement depth is 5–8 km in the Cambay basin and western edge of Narmada basin. In other parts of the mainland, it is 3–4 km. The depth of Moho beneath each site is obtained using stacking algorithm approach. The Moho is at shallower depth (26–30 km) in the western part of Kachchh region. In the eastern part and epicentral zone of the 2001 Bhuj earthquake, large variation in the Moho depths is noticed (36–46 km). In the Saurashtra region, the crust is more thick in the northern part. It varies from 36–38 km in the southern part to 42–44 km in the northern part. In the mainland region, the crust is more thick (40–44 km) in the northern and southern part and is shallow in Cambay and Narmada basins (32–36 km). The large variations of Poisson’s ratio across Gujarat region may be interpreted as heterogeneity in crustal composition. High values of σ (∼0.30) at many sites in Kachchh and few sites in Saurashtra and Mainland regions may be related to the existence of high-velocity lower crust with a mafic/ultramafic composition and, locally, to the presence of partial melt. The existing tectono-sedimentary models proposed by various researchers were also examined.  相似文献   

8.
We estimated the crustal thickness and velocity structure beneath the five stations comprising the Republic of Singapore’s seismic network. Our data set was composed of 697 teleseismic receiver functions and 7 months of broad-band data that was cross-correlated to produce inter-station Green’s functions. Surface wave group velocities were extracted from the Green’s functions to obtain dispersion data for a path from central Sumatra to Singapore in order to provide a complimentary data set to the receiver functions. Crustal thickness was estimated via an H  k stacking technique, and high-resolution 1D P-wave velocity profiles were generated beneath each station by jointly inverting receiver function stacks and the group velocity data using a linearised time-domain inversion scheme. Crustal thickness beneath four stations was found to be between 28.0 km and 32.0 km, while one station in the northeast of Singapore indicates 24.0 km thick crust. This implies a significant crustal thinning beneath Singapore over the lateral extent of 50.0 km. Inversion results exhibit several crustal features that are observable in the derived models at all five stations, indicating that they exist across Singapore as a whole. There appears to be an upper-crustal high-velocity zone beneath Singapore, underlain by a velocity inversion. Station NTU shows slower near-surface velocities than the other stations, consistent with its situation above the sedimentary Jurong formation. These results expand the available global velocity data set, as well as being useful for assessing the seismic hazard in Singapore.  相似文献   

9.
The metamorphic belt in the Basongco area, the eastern segment of Lhasa terrane, south Tibet, occurs as the tectonic blocks in Paleozoic sedimentary rocks. The Basongco metamorphic rocks are mainly composed of paragneiss and schist, with minor marble and orthogneiss, and considered previously to be the Precambrian basement of the Lhasa terrane. This study shows that the Basongco metamorphic belt experienced medium-pressure amphibolite-facies metamorphism under the conditions of T = 640–705 °C and P = 6.0–8.0 kbar. The inherited detrital zircon of the metasedimentary rocks yielded widely variable 206Pb/238U ages ranging from 3105 Ma to 500 Ma, with two main age populations at 1150 Ma and 580 Ma. The magmatic cores of zircons from the orthogneiss constrain the protolith age as ca. 203 Ma. The metamorphic zircons from all rocks yielded the consistent metamorphic ages of 192–204 Ma. The magmatic cores of zircons in the orthogneiss yielded old Hf model ages (TDM2 = 1.5–2.1 Ga). The magmatic zircons from the mylonitized granite yielded a crystallization age of ca. 198 Ma. These results indicate that the high-grade metamorphic rocks from the Basongco area were formed at early Jurassic and associated with coeval magmatism derived from the thickening crust. The Basongco metamorphic belt, together with the western and coeval Sumdo and Nyainqentanglha metamorphic belts, formed a 400-km-long tectonic unit, indicating that the central segment of the Lhasa terrane experienced the late Paleozoic to early Mesozoic collisional orogeny.  相似文献   

10.
《Gondwana Research》2014,25(3-4):865-885
Exhumation of middle and lower crustal rocks during the 450–320 Ma intraplate Alice Springs Orogeny in central Australia provides an opportunity to examine the deep burial of sedimentary successions leading to regional high-grade metamorphism. SIMS zircon U–Pb geochronology shows that high-grade metasedimentary units recording lower crustal pressures share a depositional history with unmetamorphosed sedimentary successions in surrounding sedimentary basins. These surrounding basins constitute parts of a large and formerly contiguous intraplate basin that covered much of Neoproterozoic to early Palaeozoic Australia. Within the highly metamorphosed Harts Range Group, metamorphic zircon growth at 480–460 Ma records mid-to-lower crustal (~ 0.9–1.0 GPa) metamorphism. Similarities in detrital zircon age spectra between the Harts Range Group and Late Neoproterozoic–Cambrian sequences in the surrounding Amadeus and Georgina basins imply that the Harts Range Group is a highly metamorphosed equivalent of the same successions. Maximum depositional ages for parts of the Harts Range Group are as low as ~ 520–500 Ma indicating that burial to depths approaching 30 km occurred ~ 20–40 Ma after deposition. Palaeogeographic reconstructions based on well-preserved sedimentary records indicate that throughout the Cambro–Ordovician central Australia was covered by a shallow, gently subsiding epicratonic marine basin, and provide a context for the deep burial of the Harts Range Group. Sedimentation and burial coincided with voluminous mafic magmatism that is absent from the surrounding unmetamorphosed basinal successions, suggesting that the Harts Range Group accumulated in a localised sub-basin associated with sufficient lithospheric extension to generate mantle partial melting. The presently preserved axial extent of this sub-basin is > 200 km. Its width has been modified by subsequent shortening associated with the Alice Springs Orogeny, but must have been > 80 km. Seismic reflection data suggest that the Harts Range Group is preserved within an inverted crustal-scale half graben structure, lending further support to the notion that it accumulated in a discrete sub-basin. Based on palaeogeographic constraints we suggest that burial of the Harts Range Group to lower crustal depths occurred primarily via sediment loading in an exceptionally deep Late Cambrian to Early Ordovician intraplate rift basin. High-temperature Ordovician deformation within the Harts Range Group formed a regional low angle foliation associated with ongoing mafic magmatism that was coeval with deepening of the overlying marine basin, suggesting that metamorphism of the Harts Range Group was associated with ongoing extension. The resulting lower crustal metamorphic terrain is therefore interpreted to represent high-temperature deformation in the lower levels of a deep sedimentary basin during continued basin development. If this model is correct, it indicates that regional-scale moderate- to high-pressure metamorphism of supracrustal rocks need not necessarily reflect compressional thickening of the crust, an assumption commonly made in studies of many metamorphic terrains that lack a palaeogeographic context.  相似文献   

11.
Hudson Bay conceals several fundamental tectonic elements of the North American continent, including most of the ca. 1.9–1.8 Ga Trans-Hudson orogen (THO) and the Paleozoic Hudson Bay basin. Formed due to a collision between two cratons, the THO is similar in scale and tectonic style to the modern Himalayan–Karakorum orogen. During collision, the lobate shape of the indentor (Superior craton) formed an orogenic template that, along with the smaller Sask craton, exerted a persistent influence on the tectonic evolution of the region resulting in anomalous preservation of juvenile Proterozoic crust. Extensive products of 2.72–2.68 Ga and 1.9–1.8 Ga episodes of subduction are preserved, but the spatial scale of corresponding domains increases by roughly an order-of-magnitude (to 1000 km, comparable to modern subduction environments) from the Archean to the Proterozoic. Based on analysis of gravity and magnetic data and published field evidence, we propose a new tectonic model in which Proterozoic crust in the southeastern third of Hudson Bay formed within an oceanic or marginal-basin setting proximal to the Superior craton, whereas the northwestern third is underlain by Archean crust. An intervening central belt truncates the southeastern domains and is interpreted to be a continental magmatic arc.Thick, cold and refractory lithosphere that underlies the Bay is well imaged by surface-wave studies and comprises a large component of the cratonic mantle keel beneath North America. The existence of an unusually thick mantle root indicates that subduction and plate collision during the Trans-Hudson orogeny were ‘root-preserving’ (if not ‘root-forming’) processes. Although the Hudson Bay basin is the largest by surface area of four major intracratonic basins in North America, it is also the shallowest. Available evidence suggests that basin subsidence may have been triggered by eclogitization of lower-crustal material. Compared to other basins of similar age in North America, the relatively stiff lithospheric root may have inhibited subsidence of the Hudson Bay basin.  相似文献   

12.
We have measured both P- and S-wave velocities (Vp and Vs) and Poisson's ratios (υ) of 60 typical ultrahigh pressure (UHP) metamorphic rock samples from the Chinese Continental Scientific Drilling (CCSD) main and pre-pilot holes and surface outcrops in the Sulu–Dabie orogenic belt at hydrostatic confining pressures up to 850 MPa. The experimental results, together with those compiled in Handbook of Seismic Properties of Minerals, Rocks and Ores [ Ji, S.C., Wang, Q., Xia, B., 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores. Polytechnic International Press, Montreal, 630 pp.], reveal that except for monomineralic rocks such as quartzite, serpentinite, anorthosite, limestone, and marble the rest of the rock types have Poisson's ratios falling along an upward convex curve determined from the correlations between elastic moduli and density. Poisson's ratios increase with density as the lithology changes from granite, felsic gneiss and schist, through diorite–syenite, intermediate gneiss and metasediment, to gabbro–diabase, amphibolite, and mafic gneiss, and then decrease as the rocks become ultramafic in composition. Eclogite has a higher density but a lower Poisson's ratio than peridotite. The results were applied to constrain the crustal composition and tectonic evolution of the Chinese continental crust based on crustal thickness (H) and Poisson's ratio (υ) from 248 broadband seismic stations, measured using teleseismic receiver function techniques. The North China, Yangtze, South China and Northeast China blocks and Songpan–Ganzi Terrane are dominated by low (υ < 0.26) and moderate (0.26  υ < 0.28) υ values (> 70%), suggesting the dominance of felsic composition in the crust. The Lhasa terrane, Qiangtang terrane, and Indochina block are characterized by high proportions (33–42%) of measurements with very high υ values (≥ 0.30 and H is found for the South China block, Northeast block, Lhasa block, Qiangtang terrane and Indochina block, indicating either tectonic thickening of the felsic upper and middle crust by folding and thrusting or the removal of mafic layers from the lower crust into the upper mantle by delamination.  相似文献   

13.
The latest hydraulic fracturing and stress relief measurement data in the Chinese mainland were collected. The total of 3856 data entries are measured at 1474 locations. The measured area covers 75–130°E and 18–47°N, and the depth range varies from surface to 4000 meters depth, which generally includes each active tectonic block of China and each segment of North–South seismic belt. We investigated the tectonic stress field by removing the effect of gravity. For this, we assume lateral constraints and Heim’s rule. The gravity contribution is removed by using the assumption of lateral constraint and Heim’s rule. Our results show: (1) the maximum and the minimum horizontal principal stress σH, σh and the vertical stress σV in the shallow crust of China all increase linearly with depth: σH = 0.0229D + 4.738, σh = 0.0171D + 1.829, σV = 0.0272D. Maximum and minimum horizontal tectonic stress varies as a function of depth D linearly 4.738 < σT < 0.0139D + 4.738 and 1.829 < σt < 0.0162D + 1.829. The horizontal tectonic differential stress is σT  σt = 0.0058D + 2.912. (2) The intermediate value of σT1 (regression value of tectonic stress inferred from the assumption of lateral constraint at 2000 m depth) changes in different areas, the maximum value of which is 45.6 MPa, while the minimum value of which is 26.8 MPa. Horizontal tectonic differential stress σT  σt increases linearly with depth and the maximum and minimum of σT  σt is 25.3 MPa and 13.0 MPa, respectively. In general, the stress magnitude is much higher in western than in eastern China. This indicates that the strong Indo-Eurasian collision dominates the present tectonic stress field in Chinese mainland. (3) Compared with other study regions, the northward crustal compression to the Qinghai-Tibet block is relatively lower in magnitude in the shallow subsurface and higher at deeper depth. (4) The orientations of σT in China mainland generally form a radial scattering pattern centered in Tibetan Plateau. From western to eastern China, they rotate gradually clockwise from NS to NNE, NE, NEE, and SE, which is consistent with the result of focal mechanism solutions.  相似文献   

14.
Numerous magnetite–apatite deposits occur in the Ningwu and Luzong sedimentary basins along the Middle and Lower Yangtze River, China. These deposits are located in the contact zone of (gabbro)-dioritic porphyries with surrounding volcanic or sedimentary rocks and are characterized by massive, vein and disseminated magnetite–apatite ± anhydrite mineralization associated with voluminous sodic–calcic alteration. Petrologic and microthermometric studies on multiphase inclusions in pre- to syn-mineralization pyroxene and garnet from the deposits at Meishan (Ningwu basin), Luohe and Nihe (both in Luzong basin) demonstrate that they represent extremely saline brines (~ 90 wt.% NaClequiv) that were trapped at temperatures of about 780 °C. Laser ablation ICP-MS analyses and Raman spectroscopic studies on the natural fluid inclusions and synthetic fluid inclusions manufactured at similar P–T conditions reveal that the brines are composed mainly of Na (13–24 wt.%), K (7–11 wt.%), Ca (~ 7 wt.%), Fe (~ 2 wt.%), Cl (19–47 wt.%) and variable amounts of SO4 (3–39 wt.%). Their Cl/Br, Na/K and Na/B ratios are markedly different from those of seawater evaporation brines and lie between those of magmatic fluids and sedimentary halite, suggesting a significant contribution from halite-bearing evaporites. High S/B and Ca/Na ratios in the fluid inclusions and heavy sulfur isotopic signatures of syn- to post-mineralization anhydrite (δ34SAnh = + 15.2 to + 16.9‰) and pyrite (δ34SPy = + 4.6‰ to + 12.1‰) further suggest a significant contribution from sedimentary anhydrite. These interpretations are in line with the presence of evaporite sequences in the lower parts of the sedimentary basins.The combined evidence thus suggests that the magnetite–apatite deposits along the Middle and Lower Yangtze River formed by fluids that exsolved from magmas that assimilated substantial amounts of Triassic evaporites during their ascent. Due to their Fe-oxide dominated mineralogy, their association with large-scale sodic–calcic alteration and their spatial and temporal associations with subvolcanic intrusions we interpret them as a special type of IOCG deposits that is characterized by unusually high contents of Na, Ca, Cl and SO4 in the ore-forming fluids. Evaporite assimilation apparently led to the production of large amounts of high-salinity brine and thus to an enhanced capacity to extract iron from the (gabbro)-dioritic intrusions and to concentrate it in the form of ore bodies. Hence, we believe that evaporite-bearing sedimentary basins are more prospective for magnetite–apatite deposits than evaporite-free basins.  相似文献   

15.
《Gondwana Research》2015,27(3-4):888-906
The Ongole Domain in the southern Eastern Ghats Belt of India formed during the final stages of Columbia amalgamation at ca. 1600 Ma. Yet very little is known about the protolith ages, tectonic evolution or geographic affinity of the region. We present new detrital and igneous U–Pb–Hf zircon data and in-situ monazite data to further understand the tectonic evolution of this Columbia-forming orogen.Detrital zircon patterns from the metasedimentary rocks are dominated by major populations of Palaeoproterozoic grains (ca. 2460, 2320, 2260, 2200–2100, 2080–2010, 1980–1920, 1850 and 1750 Ma), and minor Archaean grains (ca. 2850, 2740, 2600 and 2550 Ma). Combined U–Pb ages and Lu–Hf zircon isotopic data suggest that the sedimentary protoliths were not sourced from the adjacent Dharwar Craton. Instead they were likely derived from East Antarctica, possibly the same source as parts of Proterozoic Australia. Magmatism occurred episodically between 1.64 and 1.57 Ga in the Ongole Domain, forming felsic orthopyroxene-bearing granitoids. Isotopically, the granitoids are evolved, producing εHf values between − 2 and − 12. The magmatism is interpreted to have been derived from the reworking of Archaean crust with only a minor juvenile input. Metamorphism between 1.68 and 1.60 Ga resulted in the partial to complete resetting of detrital zircon grains, as well as the growth of new metamorphic zircon at 1.67 and 1.63 Ga. In-situ monazite geochronology indicates metamorphism occurred between 1.68 and 1.59 Ga.The Ongole Domain is interpreted to represent part of an exotic terrane, which was transferred to proto-India in the late Palaeoproterozoic as part of a linear accretionary orogenic belt that may also have included south-west Baltica and south-eastern Laurentia. Given the isotopic, geological and geochemical similarities, the proposed exotic terrane is interpreted to be an extension of the Napier Complex, Antarctica, and may also have been connected to Proterozoic Australia (North Australian Craton and Gawler Craton).  相似文献   

16.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

17.
The Tarim Craton is one of three large cratons in China. Presently, there is only scant information concerning its crustal evolutionary history because most of the existing geochronological studies have lacked a combined isotopic analysis, especially an in situ Lu–Hf isotope analysis of zircon. In this study, Precambrian basement rocks from the Kuluketage and Dunhuang Blocks in the northeastern portion of the Tarim Craton have been analyzed for combined in situ laser ablation ICP-(MC)-MS zircon U–Pb and Lu–Hf isotopic analyses, as well as whole rock elements, to constrain their protoliths, forming ages and magma sources. Two magmatic events from the Kuluketage Block at ∼2.4 Ga and ∼1.85 Ga are revealed, and three stages of magmatic events are detected in the Dunhuang Block, i.e., ∼2.0 Ga, ∼1.85 Ga and ∼1.75 Ga. The ∼1.85 Ga magmatic rocks from both areas were derived from an isotopically similar crustal source under the same tectonic settings, suggesting that the Kuluketage and Dunhuang Blocks are part of the uniform Precambrian basement of the Tarim Craton. Zircon Hf model ages of the ∼2.4 Ga magmatism indicate that the crust of the Tarim Craton may have been formed as early as the Paleoarchean period. The ∼2.0 Ga mafic rock from the Dunhuang Block was formed in an active continental margin setting, representing an important crustal growth event of the Tarim Craton in the mid-Paleoproterozoic that coincides with the global episode of crust formation during the assembly of the Columbia supercontinent. The ∼1.85 Ga event in the Kuluketage and Dunhuang Blocks primarily involved the reworking of the old crust and most likely related to the collisional event associated with the assembly of the Columbia supercontinent, while the ∼1.75 Ga magmatism in the Dunhuang Block resulted from a mixture of the reworked Archean crust with juvenile magmas and was most likely related to a post-collisional episode.  相似文献   

18.
Tectonically active Vindhyan intracratonic basin situated in central India, forms one of the largest Proterozoic sedimentary basins of the world. Possibility of hydrocarbon occurrences in thick sediments of the southern part of this basin, has led to surge in geological and geophysical investigations by various agencies. An attempt to synthesize such multiparametric data in an integrated manner, has provided a new understanding to the prevailing crustal configuration, thermal regime and nature of its geodynamic evolution. Apparently, this region has been subjected to sustained uplift, erosion and magmatism followed by crustal extension, rifting and subsidence due to episodic thermal interaction of the crust with the hot underlying mantle. Almost 5–6 km thick sedimentation took place in the deep faulted Jabera Basin, either directly over the Bijawar/Mahakoshal group of mafic rocks or high velocity-high density exhumed middle part of the crust. Detailed gravity observations indicate further extension of the basin probably beyond NSL rift in the south. A high heat flow of about 78 mW/m2 has also been estimated for this basin, which is characterized by extremely high Moho temperatures (exceeding 1000 °C) and mantle heat flow (56 mW/m2) besides a very thin lithospheric lid of only about 50 km. Many areas of this terrain are thickly underplated by infused magmas and from some segments, granitic–gneissic upper crust has either been completely eroded or now only a thin veneer of such rocks exists due to sustained exhumation of deep seated rocks. A 5–8 km thick retrogressed metasomatized zone, with significantly reduced velocities, has also been identified around mid to lower crustal transition.  相似文献   

19.
Consolidated crust in the North Barents basin with sediments 16–18 km thick is attenuated approximately by two times. The normal faults in the basin basement ensure only 10-15% stretching, which caused the deposition of 2–3 km sediments during the early evolution of the basin. The overlying 16 km of sediments have accumulated since the Late Devonian. Judging by the undisturbed reflectors to a depth of 8 s, crustal subsidence was not accompanied by any significant stretching throughout that time. Dramatic subsidence under such conditions required considerable contraction of lithospheric rocks. The contraction was mainly due to high-grade metamorphism in mafic rocks in the lower crust. The metamorphism was favored by increasing pressure and temperature in the lower crust with the accumulation of a thick layer of sediments. According to gravity data, the Moho in the basin is underlain by large masses of high-velocity eclogites, which are denser than mantle peridotites. The same is typical of some other ultradeep basins: North Caspian, South Caspian, North Chukchi, and Gulf of Mexico basins. From Late Devonian to Late Jurassic, several episodes of rapid crustal subsidence took place in the North Barents basin, which is typical of large petroleum basins. The subsidence was due to metamorphism in the lower crust, when it was infiltrated by mantle-source fluids in several episodes. The metamorphic contraction in the lower crust gave rise to deep-water basins with sediments with a high content of unoxidized organic matter. Along with numerous structural and nonstructural traps in the cover of the North Barents basin, this is strong evidence that the North Barents basin is a large hydrocarbon basin.  相似文献   

20.
Detrital zircons from the upper Cambrian-Devonian sandstones (Crashsite Group; n = 485) and Carboniferous tillite (Whiteout Conglomerate; n = 81) of the Ellsworth Mountains, Antarctica record a steady supply of Neoproterozoic (“Pan-African”) orogeny (~ 550–600 Ma), Grenville (~ 1000 Ma) and Neoarchean (~ 3000–3500 Ma) zircons into the northern marginal basin of Gondwana. The overlying Permian Glossopteris-bearing Polarstar Formation shales (n = 85) have the same zircon provenance as underlying units but also include a dominance of depositional-age (263 Ma) euhedral zircons which are interpreted to be of local, volcanic arc origin. Modeling of detrital zircon provenance suggests that source areas were present in Pan-African and Laurentian crust throughout the Paleozoic. We also report calcite twinning strain results (12 strain analyses; n = 398 twins) for the Cambrian Minaret Fm. in the Heritage range which is predominantly a layer-parallel shortening strain in the direction (WSW-ENE) of Permian Gondwanide orogen thrust transport. There is a secondary, sub-vertical twinning strain overprint. The initiation of localized lower-middle Cambrian rifting (Heritage Group deposition) in Grenville-aged crust as Gondwana amalgamated and the subsequent Jurassic counterclockwise rotation of the Ellsworth-Whitmore terrane out of the Permian Gondwanide belt into central Antarctica each remain tectonic curiosities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号