首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient Electromagnetic (TEM), known also as Time Domain Electromagnetic (TDEM) and Magnetic Resonance Sounding (MRS) methods were applied jointly to investigate variations in lithology and groundwater salinity in the Nahal Hever South area (Dead Sea coast of Israel). The subsurface in this area is highly heterogeneous and composed of intercalated sand and clay layers over a salt formation, which is partly karstified. Groundwater is very saline, with a chloride concentration of 100–225 g/l. TEM is known as an efficient tool for investigating electrically conductive targets like saline water, but it is sensitive to both the salinity of groundwater and the porosity of rocks. MRS, however, is sensitive primarily to groundwater volume, but it also allows delineating of lithological variations in water-saturated formations. MRS is much less sensitive to variations in groundwater salinity in comparison with TEM. We show that MRS enables us to resolve the fundamental uncertainty in TEM interpretation caused by the equivalence between groundwater resistivity and lithology. Combining TEM and MRS, we found that the sandy Dead Sea aquifer filled with Dead Sea brine is characterized by a bulk resistivity of ρx > 0.4 Ωm, whereas zones with silt and clay in the subsurface are characterized by a bulk resistivity of ρx < 0.4 Ωm. These observations are confirmed by calibration of the TEM method performed near 18 boreholes.  相似文献   

2.
Three-dimensional (3D) district-scale geoscience information for the Luanchuan Mo district was integrated for understanding the development of its regional geology and ore-forming processes and for decision-making about potential targets for mineral exploration. The methodology and datasets used were: (1) construction of an initial geological model (25 km × 20 km × 2.5 km) using 1:10,000 scale geological map, nine geological cross-sections and gravity and magnetic data; (2) construction of three large-scale Mo deposits model (5 km × 4 km × 2.5 km) using 1:2000 scale geological and topographic maps, 288 boreholes (total core length of 158,700 m), and 32 1:2000 scale cross-sections; (3) 3D inversion of 1:25,000 scale gravity and magnetic data for identification metallogenic anomaly zones which are associated with Jurassic intrusions; (4) extraction of ore-controlling formation and sequence of the Luanchuan Group using the large-scale 3D models of Mo deposits and results of analysis of lithogeochemical samples from outcrops and borehole cores; (5) identification of ore-forming and ore-controlling faults using the large-scale 3D model of Mo deposits and mineralized Jurassic granite porphyry stocks; (6) boost weights-of-evidence and concentration–volume (C–V) fractal analyses to integrate metallogenic information and to identify and classify potential Mo targets. Four classes of exploration targets were identified using C–V modeling and 3D known orebodies model: the first and second class targets are mainly located in three large magma-skarn type deposit camps, occupying ~ 1.4 km3 with total estimated reserve of ~ 2.3 Mt; the third class targets, which are mainly located in Huangbeiling and Yuku deposit camps comprising concealed magma-skarn type deposits, occupy ~ 2.8 km3 and represent a new target exploration zone in the Luanchuan district; the fourth class targets, which are located in the Huoshenmiao, Majuan, and Daping zones, occupy ~ 15 km3 and represent potential mineral resources with likely similar orebody features as the Yuku deposit.  相似文献   

3.
Magnetotelluric studies over the igneous arc of the Indo Burman range in the Sagaing province of Myanmar have delineated the high resistivity Indian plate subducting westwards beneath the Burmese block to depths of 30 km and beyond. The thick moderately resistive (20–100 Ω m) layer overlying the subducting Indian plate may be due to the low resistivity sediments. The entire region is covered with prominent sedimentary layer with a conductance varying between 20 and 3000 S showing a general increase from the east to west, suggesting that their thickness increases toward the west. The large unsystematic variations in the conductance are indicative of the widely varying depositional environments and also possible vertical block movements during the course of their deposition. A west dipping low resistivity zone to the east of Burmese block seems to demarcate its eastern limit, suggesting the possibility of a hitherto unknown deep seated fault, which is also supported by the several earthquake foci located over this zone. The nature of the crustal movements over this fault is not immediately apparent. Possibility exists that the Sagaing fault is an en echelon fault and the present feature observed here is a part of this en echelon fault. The possibility of channel flows of the weakened rocks in the deep crust observed in the vicinity of the eastern Himalayan syntaxis may also cause such low resistivity zones.  相似文献   

4.
5.
The left-lateral strike–slip Dead Sea Fault Zone (DSFZ) extends from the Red Sea in the south to the East Anatolian Fault Zone (EAFZ) in the north. This study examines the northern part of the DSFZ around Amik Basin and presents surface and subsurface geological evidence for the Quaternary activity and initiation age of the northernmost DSFZ. The DSFZ extends N–S in the south of the Amik Basin where clear geological and morphological evidence exists for faulting. Geological observations around Amik Basin, analyses of borehole data and electrical resistivity profiles within the Amik Basin indicate that the activity of the northern DSFZ started after Pliocene in the Amik Basin. Subsurface data in the basin suggest that the DSFZ offsets a pre-Quaternary basin sinistrally by about 7.9 km. The offset pre-Quaternary basin suggests at least 4.94 ± 0.13 mm/year slip rate for the northern part of the DSFZ. The Karasu Fault Zone (KFZ) extends in an en-echelon pattern along the western margin of the Karasu Valley and it transfers the significant amount of slip from DSFZ to the EAFZ.  相似文献   

6.
Evaporite karst has intensively developed recently along the Dead Sea (DS) coastal area in Israel and Jordan. It takes place in very saline groundwater dissolving buried salt layers, causing collapse of the surface. In this paper, groundwater salinity throughout the DS coastal area is investigated using the Transient Electromagnetic (TEM) method. Twenty-eight TEM soundings along the DS coastal area were carried out close to observation boreholes to calibrate resistivity–salinity relationships. Groundwater electrical conductivity was measured in these boreholes, and its salinity was analyzed at the laboratory by the Geological Survey of Israel (GSI). Quantitative relationships between bulk resistivity (ρx), water resistivity (ρw) and chloride concentration (Ccl) were derived in the resistivity range less than 1.0 Ω·m that enabled to evaluate the salinity of the aquifer in in situ conditions. Average values of the effective porosity of sandy sediments, φe = 0.32, and of silty ones, φe = 0.44, were used to generate the corresponding Archie equations. The study has shown that a DS aquifer with bulk resistivity in the range of 0.55–1.0 Ω·m contains in pores brine with 50–110 gchloride/l of (22–50% of that in saturated conditions, respectively), i.e. it keeps the potential to dissolve up to 114–174 g/l of salt.  相似文献   

7.
Iron mobilisation from aquifer rocks in an important fractured aquifer system in South Africa is resulting in clogging of boreholes by Fe oxide minerals. Leach experiments using natural waters were conducted to determine the effects of redox conditions, pH lithology and presence of organic acids on the rate and extent of Fe dissolution from aquifer rocks, with the aim of clarifying the association of Fe clogging with geological formations that show Fe staining on weathering. The results indicate that the greatest amount of Fe (>30 mmol/kg rock) is leached from arenaceous rocks with low total Fe contents (49.0–75.0 mmol/kg) under anoxic conditions. Rocks with the highest Fe contents (>800 mmol/kg) generated low concentrations of Fe (<10 mmol/kg) even under favourable conditions of 0 mg/L DO and pH 3. The extent of Fe dissolution from the rocks was found to be most strongly dependent on the redox conditions, and the form of Fe present in the rock, with ascorbate-extracted amorphous Fe being the most mobile. The rate of dissolution is affected by pH and the presence of natural organic acids in the leachate. However, the effect of organic acids was only noticeable on arenaceous rocks.  相似文献   

8.
With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forêts in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.  相似文献   

9.
The city of Izmir, located at the western end of Turkey, has experienced many strong earthquakes throughout its history. The southern coast of Izmir Bay, one of the most densely populated areas of Izmir, is located on deep alluvial sediments. It is important to determine the effect of local soil conditions on dynamic ground response in the study area, where thick loose water-saturated alluvial sediments exist. A database including geotechnical and geological information on the study area is constructed. Majority of the site is classified as D and E according to NEHRP provisions. Dynamic site response analyses are performed with EERA by utilizing the field and laboratory test results and earthquake time histories of moderate-scale earthquakes such as 1977 Izmir (ML = 5.3), 2003 Urla (Md = 5.6), and 2005 Uzunkuyu-Urla (ML = 5.9), which occurred in and nearby Izmir. In addition, a scenario ground motion generated by the Izmir Fault with a magnitude of 6.5, having an average distance of 10 km to the study area, is also considered. The output data obtained from the dynamic site response analyses are evaluated, and maps displaying variation in dynamic parameters on ground surface are prepared for the southern coast of Izmir Bay, Turkey. Consequently, the dynamic analyses performed with the soil models constituted for the study area verified the damage occurred in a close distance event of 1977 Izmir earthquake. The scenario earthquake resulted in peak ground accelerations more than 0.6 g at the eastern and western ends of the study area. However, long distance events resulted in spectral amplifications by up to 5 times. With this study, it is emphasized that local soil conditions should be evaluated individually in the area of interest. Generation of a site-specific design spectrum is recommended for the areas located on deep alluvial sediments.  相似文献   

10.
We report 6 K–Ar ages and paleomagnetic data from 28 sites collected in Jurassic, Lower Cretaceous and Paleocene rocks of the Santa Marta massif, to test previous hypothesis of rotations and translations of this massif, whose rock assemblage differs from other basement-cored ranges adjacent to the Guyana margin. Three magnetic components were identified in this study. A first component has a direction parallel to the present magnetic field and was uncovered in all units (D = 352, I = 25.6, k = 57.35, a95 = 5.3, N = 12). A second component was isolated in Cretaceous limestone and Jurassic volcaniclastic rocks (D = 8.8, I = 8.3, k = 24.71, a95 = 13.7, N = 6), and it was interpreted as of Early Cretaceous age. In Jurassic sites with this component, Early Cretaceous K–Ar ages obtained from this and previous studies are interpreted as reset ages. The third component was uncovered in eight sites of Jurassic volcaniclastic rocks, and its direction indicates negative shallow to moderate inclinations and northeastward declinations. K–Ar ages in these sites are of Early (196.5 ± 4.9 Ma) to early Late Jurassic age (156.6 ± 8.9 Ma). Due to local structural complexity and too few Cretaceous outcrops to perform a reliable unconformity test, we only used two sites with (1) K–Ar ages, (2) less structural complexity, and (3) reliable structural data for Jurassic and Cretaceous rocks. The mean direction of the Jurassic component is (D = 20.4, I = −18.2, k = 46.9, a95 = 5.1, n = 18 specimens from two sites). These paleomagnetic data support previous models of northward along-margin translations of Grenvillian-cored massifs. Additionally, clockwise vertical-axis rotation of this massif, with respect to the stable craton, is also documented; the sense of rotation is similar to that proposed for the Perija Range and other ranges of the southern Caribbean margin. More data is needed to confirm the magnitudes of rotations and translations.  相似文献   

11.
《Gondwana Research》2013,23(3-4):956-973
The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavaí mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavaí intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8°, Im = 50.7° (α95 = 8.0°, K = 22.1), which yielded a paleomagnetic pole located at 249.7°E, 57.0°S (A95 = 8.6°). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100–1000 Ma Nova Brasilândia belt—a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations.  相似文献   

12.
Detrital zircons from a Palaeoproterozoic quartzite, deposited between 1.85 and 1.82 Ga in the northern Aravalli orogen of NW India, show a distinctive age peak of ca. 1.85 Ga and variable, but largely subchondritic εHf1.85 Ga between ? 1.3 and ? 21.0 corresponding to hafnium model ages of 2.5 to 3.6 Ga. These data indicate an important period of reworking of ancient (Eo- to Neoarchaean), strongly heterogeneous continental crust at this time. Prevalence of ca. 1.85 Ga subduction-related granitoids, almost identical U–Pb age spectra and εHft of detrital zircons in ca. 1.85 Ga metasedimentary rocks in the Aravalli orogen and the inner Lesser Himalaya indicate similar sediment provenances and thus a geological connection between these two terranes during late Palaeoproterozoic. All together, the data constrain a rapid succession of sedimentation, metamorphism and subduction-related magmatic activity and support the interpretation of an active geodynamic realm along the entire north Indian margin at ca. 1.85 Ga. Comparison of detrital zircon data in conjunction with published paleomagnetic data from north India and other crustal blocks of the Columbia supercontinent, additionally, suggest a close affinity of north India with Madagascar, the Cathaysia block of South China and South Korea during Columbia times.  相似文献   

13.
Hydraulic processes in porous media can be monitored in a minimally invasive fashion by time-lapse electrical resistivity tomography (ERT). The permanent installation of specifically designed ERT instrumentation, telemetry and information technology (IT) infrastructure enables automation of data collection, transfer, processing, management and interpretation. Such an approach gives rise to a dramatic increase in temporal resolution, thus providing new insight into rapidly occurring subsurface processes. In this paper, we discuss a practical implementation of automated time-lapse ERT. We present the results of a recent study in which we used controlled hydraulic experiments in two test cells at reduced field scale to explore the limiting conditions for process monitoring with cross-borehole ERT measurements. The first experiment used three adjacent boreholes to monitor rapidly rising and falling water levels. For the second experiment, we injected a saline tracer into a homogeneous flow field in freshwater-saturated sand; the dynamics of the plume were then monitored with 2D measurements across a 9-borehole fence and 3D measurements across a 3 × 3 grid of boreholes. We investigated different strategies for practical data acquisition and show that simple re-ordering of ERT measurement schemes can help harmonise data collection with the nature of the monitored process. The methodology of automated time-lapse ERT was found to perform well in different monitoring scenarios (2D/3D plus time) at time scales associated with realistic subsurface processes. The limiting factor is the finite amount of time needed for the acquisition of sufficiently comprehensive datasets. We found that, given the complexity of our monitoring scenarios, typical frame rates of at least 1.5–3 images per hour were possible without compromising image quality.  相似文献   

14.
《Sedimentary Geology》2006,183(1-2):51-69
The Chicxulub Sedimentary Basin of the northwestern Yucatan Peninsula, Mexico, which was formed because of the largest identified Phanerozoic bolide impact on Earth, became a site of deposition of dominantly marine carbonate sediments during most of the Cenozoic Era. This is a study of the filling and diagenetic history of this basin and surrounding areas. The study makes use of lithologic, biostratigraphic, petrographic, and geochemical data obtained on core samples from boreholes drilled throughout the northwestern Yucatan Peninsula.The core sample data indicate that: 1) The Chicxulub Sedimentary Basin concentrated the deposition of pelagic and outer-platform sediments during the Paleocene and Eocene, and, in places, during the Early Oligocene, as well, and filled during the Middle Miocene, 2) deeper-water limestone also is present within the Paleocene and Lower Eocene of the proposed Santa Elena Depression, which is located immediately south of the Basin, 3) shallow-water deposits are relatively more abundant outside the Basin and Depression than inside, 4) the autigenic and allogenic silicates from the Paleogene formations are the most abundant inside the Depression, 5) sediment deposition and diagenesis within the Basin also were controlled by impact crater topography, 6) the abundance of the possible features of subaerial exposure increases upward and outward from the center of the Basin, and 7) the formation of replacive low-magnesium calcite and dolomite, dedolomitization, dissolution, and precipitation of vug-filling calcite and dolomite cement have been more common outside the Basin than inside.δ18O in whole-rock (excluding vug-filling) calcite from core samples ranges from − 7.14‰ to + 0.85‰ PDB. δ13C varies from − 6.92‰ to + 3.30‰ PDB. Both stable isotopes correlate inversely with the abundance of subaerial exposure features indicating that freshwater diagenesis has been extensive especially outside and at the edge of the Chicxulub Sedimentary Basin.δ18O and δ13C in whole-rock (excluding vug-filling) dolomite ranges from − 5.54‰ to + 0.87‰ PDB and − 4.63‰ to + 3.38‰ PDB, respectively. Most dolomite samples have negative δ18O and positive δ13C suggesting that replacive dolomitization involved the presence of a fluid dominated by freshwater and/or an anomalously high geothermal gradient.Most dolomite XRD-determined mole percent CaCO3 varies between 51 and 56. Replacive dolomite is larger, more euhedral, and less stoichiometric inside the Chicxulub Sedimentary Basin than outside.  相似文献   

15.
The Perth Abyssal Plain (PAP), located offshore southwest Australia, formed at the centre of Mesozoic East Gondwana breakup and Kerguelen plume activity. Despite its importance as a direct and relatively undisturbed recorder of this early spreading history, sparse geophysical data sets and lack of geological sampling hamper our understanding of the evolution of the PAP. This study combines new bathymetric profiles across the PAP with petrographic and geochemical data from the first samples ever to be dredged from the flanks of the Dirck Hartog Ridge (DHR), a prominent linear bathymetric feature in the central PAP, to better constrain the formation of the early Indian Ocean floor and the influence of the Kerguelen plume. Seafloor spreading in the PAP initiated at ~ 136 Ma with spreading observed to occur at (half) rates of ~ 35 mm/yr. Changes in spreading rate are difficult to discern after the onset of the Cretaceous Quiet Zone at ~ 120 Ma, but an increase in seafloor roughness towards the centre of the PAP likely resulted from a half-spreading rate decrease from 35 mm/yr (based on magnetic reversals) to ~ 24 mm/yr at ~ 114 Ma. Exhumed gabbro dredged from the southernmost dredge site of the DHR supports a further slowdown of spreading immediately prior to full cessation at ~ 102 Ma. The DHR exhibits a high relief ridge axis and distinctive asymmetry that is unusual compared to most active or extinct spreading centres. The composition of mafic volcanic samples varies along the DHR, from sub-alkaline dolerites with incompatible element concentrations most similar to depleted-to-normal mid-ocean ridge basalts in the south, to alkali basalts similar to ocean island basalts in the north. Therefore, magma sources and degrees of partial melting varied in space and time. It is likely that the alkali basalts are a manifestation of later excess volcanism, subsequent to or during the cessation of spreading. In this case, enriched signatures may be attributed tectonic drivers and melting of a heterogeneous mantle, or to an episodic influence of the Kerguelen plume over distances greater than 1000 km. We also investigate possible scenarios to explain how lower crustal rocks were emplaced at the crest of the southern DHR. Our results demonstrate the significance of regional tectonic plate motions on the formation and deformation of young ocean crust, and provide insight into the unique DHR morphology.  相似文献   

16.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   

17.
The Xiaohuangshan ophiolite of the Beishan (Inner Mongolia) is located in the southern margin of the Central Asian Orogenic Belt. It consists of several blocks composed dominantly of serpentinized ultramafic rocks, cumulative gabbros and basalts. The geochemical data of gabbros and basalts obtained from the Xiaohuangshan ophiolite are similar to tholeiitic rocks. They all have low TiO2 and high Al2O3 contents. Their light rare earth elements are slightly enriched, (La/Yb)N = 3.62–6.80, similar to the typical enriched mid-ocean ridge basalts. The mafic rocks display enrichments in large ion lithophile elements and depletions in high field strength elements, as well as significant Nb–Ta–Ti negative anomalies, similar to subduction-derived rocks. All these geochemical characteritics indicate that the Xiaohuangshan ophiolite would form in a subduction zone from a slightly enriched mantle source. Ion microprobes (SHRIMP) U–Pb dating were conducted on zircons from the basalt and gabbro. The weighted mean ages are 336.4 ± 4.1 Ma and 345 ± 14 Ma, which are considered as the crystallization ages of the basalt and gabbro, respectively. Together with other two units, the Dongqiyishan arc belt and the Yueyashan–Xichangjing ophiolite, the Xiaohuangshan ophiolite forms a Late Paleozoic arc-basin system, indicating that the Paleo-Asian Ocean did not close in the early Carboniferous. Based on the geochemical characteristics of adjacent geological bodies and their settings, the Xiaohuangshan ophiolite is considered as an indicator of a suture zone between the different epicontinental belts in the Beishan region.  相似文献   

18.
《Quaternary Science Reviews》2007,26(19-21):2661-2673
Extensive areas in the southern part of the Duero Tertiary Basin (Central Spain) are covered by aeolian sands. Presently, the aeolian system is relict but in its origin and development it can be described as a “wet aeolian system”. Climatic and environmental changes during the Holocene are typified by alternating humid and arid periods. These are recorded in the sedimentary record as either organic-rich sandy palaeosols or clean aeolian sand, respectively. Palaeosol dating (12 radiocarbon dated samples) and stratigraphical and sedimentological analysis of several dunefields in quarries and boreholes allow the distinction of four periods of palaeosol development since the Allerød.Aeolian sediments commonly rest on fluvial deposits, which were themselves the major source area for aeolian sands. These fluvial deposits have an age of about 14,000 cal yr BP. The first phase of aeolian activity postdates these fluvial sediments and has an upper age of about 12,000–11,700 cal yr BP, probably corresponding to the last cold oscillation of the Lateglacial (Younger Dryas). The second phase ranges from about 11,500 to 9500 cal yr BP, during which period the majority of dunes in the Tierra de Pinares area formed. This is also a major phase of aeolian activity in other areas of the Iberian Peninsula. A third and probably discontinuous phase of aeolian activity took place between 6800 and about 3000 cal yr BP. The age for this phase is supported by the presence of Visigothic burial sites covered by aeolian sands. The presence of charred material and degraded slipfaces clearly indicate stabilisation by vegetation and the final degradation of the aeolian system at the end of the fourth aeolian phase (990–540 cal yr BP). Minor aeolian activity has also occurred subsequently in this area, since aeolian sand movement was even reported in the 20th century.The aeolian phases can be tentatively correlated with aeolian phases in Europe. Aeolian activity tends to occur regionally during specific time-intervals, especially in dunefields with little human disturbance. This argues for a broad climatic forcing in Holocene aeolian accumulation, such has been previously suggested for the little ice age. The precise timing of these phases, however, is not strictly coincident, probably due to the delayed responses of aeolian environments to climatic and subsequent vegetation change.  相似文献   

19.
Interpretation of the Thomson Orogen and its context within the Tasmanides of eastern Australia is hampered by vast areas of deep sedimentary cover which also mask potential relationships between central and eastern Australia. Within covered areas, basement drill cores offer the only direct geological information. This study presents new detrital zircon isotopic data from these drill cores and poorly understood outcropping units to provide new age and provenance information for sedimentary rocks from the Thomson Orogen. Two distinct detrital zircon signatures are revealed. One is dominated by Grenvillian-aged (1300–900 Ma) zircons with a significant peak at ~ 1180 Ma and lesser peak at ~ 1070 Ma. These age peaks, along with Lu–Hf isotopic compositions (median εHf(t) = + 1.5), dominantly mantle-like δ18O values (median = 5.53‰) and model ages of ~ 1.89 Ga, support a Musgrave Province (central Australia) source. The dominance of Grenvillian-aged material additionally points to deposition during the Petermann Orogeny (570–530 Ma) when the Musgrave Province was uplifted, shedding abundant material to the Centralian Superbasin. Comparable age spectra suggest that parts of the Thomson Orogen were connected to the Centralian Superbasin during this period. We use the term ‘Syn-Petermann’ to describe this signature which is observed in two drill cores adjacent to the North Australian Craton and scattered units in the outcropping Thomson Orogen. The second signature marks a significant provenance shift and is remarkably consistent throughout the Thomson Orogen. Age spectra exhibit dominant peaks at 600–560 Ma, lesser 1300–900 Ma populations and maximum depositional ages of ~ 495 Ma. This pattern is termed the ‘Pacific Gondwana’ detrital zircon signature and is recognised throughout eastern Australia, Antarctica and central Australia. Lu–Hf isotope data for Thomson Orogen rocks with this signature are highly variable with εHf(t) values between ‐ 49 and + 10 and dominantly supracrustal δ18O values suggesting input from different and more diverse source regions relative to those exhibiting the Syn-Petermann signature.  相似文献   

20.
We present new data on the highly fractionated Late Triassic I-type Liyuantang granite, which is located in the middle segment of the South Qinling Subzone of central China and is associated with molybdenum mineralization. Zircon U–Pb dating indicates that the granite was emplaced at 210.1 ± 1.9 Ma, with a single zircon containing an inherited core that yielded an age of 449.8 ± 7.1 Ma. Magmatic zircons from the granite have εHf(t) values of − 4.0 to + 1.5, whereas the inherited zircon core has a εHf(t) value of − 5.3. Calculated Hf model ages of crust formation are indicative of substantial contributions from melting of Proterozoic crust that ranges in age from 1501 to 1155 Ma. The granite contains high concentrations of Si, Al, Na, and K, is enriched in Rb, Th, and U, has elevated Rb/Sr and Ga/Al ratios, and is depleted in Ti, Fe, Mn, Mg, Ca, and P, with significantly negative Eu anomalies (δEu = 0.33–0.50), similar to other highly fractionated I-type granites. These data indicate that the magmas that formed the Liyuantang pluton were produced during partial melting of Proterozoic garnet-absent quartz amphibolites. The magmas then fractionated apatite, feldspar, Ti-bearing phases, biotite, and hornblende prior to emplacement.Re–Os isotope analysis of molybdenite from the study area yields a mineralization age of 200.9 ± 6.2 Ma, suggesting that the Liyuantang molybdenum deposit formed during a previously unrecognized mineralization event. The present results, together with previous data, demonstrate that highly fractionated I-type granites associated with the second pulse of magmatism in the South Qinling subzone should be considered highly prospective for mineral exploration, focusing on Triassic–Early Jurassic granitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号