首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

3.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   

4.
The northwest African margin has been affected by numerous large-scale landslides during the late Quaternary. This study focuses on a recent collapse of the Sahara Slide headwall and characterises the resulting flow deposit. Core and seismic data from the base of the upper headwall reveal the presence of blocky slide debris, comprising heavily deformed hemipelagic slope sediments. The blocky slide debris spilled over a lower headwall 60 km downslope and formed a thick transparent debris flow unit. Cores recovered 200–250 km farther downslope contain a surficial turbidite that is interpreted to be linked to the headwall collapse event based on timing and composition. One core located approximately 200 km from the headwall scar (C13) contains debrite encased in turbidite. The debrite comprises sheared and contorted hemipelagic mudstone clasts similar as those seen in the vicinity of the Sahara Slide headwall, and lacks matrix. This debrite pinches out laterally within 25 km of C13, whereas the accompanying turbidite can be correlated across 700 km of the northwest African margin. The linked turbidite–debrite bed is interpreted to have formed through recent failure of the steep Sahara Slide headwall that either 1) generated both a debris flow and a turbidity current almost simultaneously, or 2) generated a debris flow which with entrainment of water and progressive dilution led to formation of an accompanying turbidity current.  相似文献   

5.
The lower part of the Carboniferous Shannon Basin of Western Ireland contains a deep-water succession which exceeds 1200 m in thickness that comprises five lithologically different units deposited within a confined, relatively narrow basin: (i) a calciclastic debris-flow and turbidite unit formed by resedimentation from nearby carbonate platforms, (ii) a siliciclastic black shale succession with former source potential which onlaps basin margins (Clare Shales), (iii) a sandstone-dominated turbidite formation, controlled by ponded accommodation and deposited axially in the basin (Ross Formation), (iv) a mudstone-rich turbidite-bearing succession, which onlaps basin margins (lower Gull Island Formation), and (v) a mudstone-dominated prograding slope succession (upper Gull Island Formation and lower Tullig Cyclothem), which grades transitionally upwards into deltaic deposits. The top unit records progradation at a time when basin differential subsidence had diminished significantly and local basin topography did not control deposition. The two upper mudstone-dominated units are different in terms of both sandstone content and their genetic significance within the overall basin-fill, and their potential relevance as reservoir analogues.The lower part of the Gull Island Formation contains three principal facies associations: (a) shallow turbidite channels and sheets representing channel margin and levee deposits, (b) mud-rich slumps, and (c) less than 1 m thick, rare, hemipelagic shales. More than 75% is deformed by soft-sediment deformation, but only to a smaller degree affecting sandstone units. The turbidites record transport to the ENE, along the axis of the basin, while the slumps were derived from an unstable northern slope and transported transversely into the basin towards the southeast. The distribution of turbidite sandstone and slumps is inversely proportional. Sandstones decrease in importance away from the basin axis as slumps increase in number and thickness. The lower part of the Gull Island Formation is interpreted to record progressive fill of a deep basin controlled by local, healed slope accommodation with onlap/sidelap of the basin margins. The instability resulted from a combination of fault-controlled differential subsidence between basin margin and basin axis, and high rates of sedimentation.The upper part of the Gull Island Formation is entirely dominated by mudstones, which grade upwards into siltstones. It contains rare, up to 15 m thick, isolated channels filled by turbidites, showing transport towards the east. The upper part records easterly progradation of a deep-water slope genetically tied to overlying deltaic deposits, and controlled by regional accommodation.The contrasts between the lower and upper parts of the Gull Island Formation show that onlapping/sidelapping turbidite successions have reservoir potential near basin axes, but that prograding deep-water slopes are less likely to have reservoir potential of significance. A suggested regional downlap surface between the two parts is a significant break and marker in terms of reservoir potential.  相似文献   

6.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

7.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

8.
9.
The Var turbidite system is a small sandy system located in the Ligurian Basin. It was deposited during the Pliocene-Quaternary in a flat-floored basin formed during the Messinian salinity crisis. The system was fed through time by the Var and Paillon canyons that connect directly to the Var and Paillon rivers. It is still active during the present sea-level highstand. Two main mechanisms are responsible for gravity-flow triggering in the Var turbidite system: (1) mass-wasting events affect mainly the upper part of the continental slope, in areas where volumes of fresh sediment delivered by rivers are highest, and result from the under-consolidation state of slope sediments and earthquakes, and (2) high-magnitude river floods resulting from melting of snow and convective rainfall during fall and spring seasons, and generating hyperpycnal turbidity currents at river mouths when the density of freshwater transporting suspended particles exceeds that of ambient seawater. Failure- and flood-induced gravity flows are involved through time in the construction of the Var Sedimentary Ridge, the prominent right-hand levee of the Var system, and sediment waves. Processes of construction of both the Var Ridge and sediment waves are closely connected. Sandy deposits are thick and abundant in the eastern (downchannel) part of the ridge. Their distribution is highly constrained by the strong difference of depositional processes across the sediment waves, potentially resulting through time in the individualization of large and interconnected sand bodies.  相似文献   

10.
The westernmost Algerian margin (south Algero-Provençal basin) depicts a few offshore active faults, moderate to rare seismicity, and generally very steep slopes (>16°). We classified and mapped 12 echo types according to their sub-bottom acoustic facies observed on this margin on 2–5.2 kHz Chirp echo-sounder data (MARADJA 2003 cruise). The echo-character maps are interpreted in terms of sedimentary processes: the B1 echo type (parallel to subparallel high- to low-amplitude sub-bottom reflections), mainly in the deep basin, corresponds to hemipelagic sedimentation; R1 (prolonged single echo with no sub-bottoms) and R2 (small irregular overlapping hyperbolae) echo types, generally near or in canyon systems, are associated with turbidity currents or more rarely to contour currents or mass-transport deposits such as slumps, slides and debris flows; the transparent echo types (T1–T5) and R3 (chaotic lens of low-amplitude reflections on top of higher amplitude), often located at the foot of the slope or canyons walls, typically indicate mass-transport deposits (like slides) or turbidites. Large zones that display a large variety of echo types are evidenced in the study area and are generally associated with turbidity currents, but could also be associated with bottom currents. It appears that active tectonics plays a significant role in this part of the margin which presents a few active faults offshore but also a strong and relatively frequent seismicity onland. The general pattern of the distribution of mass-transport deposits is particular – i.e. many but small slides all along the margin – and suggests a probable triggering by recurrent earthquake shakings. However, active tectonics is not the only factor influencing the deposition pattern, as some zones seem characterized by predominant strong turbidity currents transporting sediments far away from the foot of the margin, whereas others depict retrogressive erosion features on the slope, i.e. small slides scarps in gullies rather than transport by turbidity currents. In particular, the rivers sediment discharge fluxes and the geomorphologic characteristics of the margin seem to be very important factors too.  相似文献   

11.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

12.
The Rhone Fan is a large Plio-Pleistocene turbidite deposit in the western Mediterranean Sea. The fan is fed from the broad Rhone River delta, but only one canyon, the Petit-Rhone, has fed most of the major turbidite depositional sequences that have been mapped. Slumping of sediment from intercanyon areas on the delta slope also has provided much sediment for the fan. The lack of Recent turbidite deposition on the fan suggests that turbidite sedimentation dominates during glacial low stands of sea level, building major leveed valley sequences, while surficial slumping of the valley levee deposits and pelagic sedimentation seem to mark high stands of sea level during interglacial periods.  相似文献   

13.
The Rhone Fan is a large Plio-Pleistocene turbidite deposit in the western Mediterranean Sea. The fan is fed from the broad Rhone River delta, but only one canyon, the Petit-Rhone, has fed most of the major turbidite depositional sequences that have been mapped. Slumping of sediment from intercanyon areas on the delta slope also has provided much sediment for the fan. The lack of Recent turbidite deposition on the fan suggests that turbidite sedimentation dominates during glacial low stands of sea level, building major leveed valley sequences, while surficial slumping of the valley levee deposits and pelagic sedimentation seem to mark high stands of sea level during interglacial periods. Margin setting represents fan and/or source area  相似文献   

14.
A regional study of the Veracruz Basin provided an excellent view of long-term deepwater sedimentation patterns from an evolving foreland-type basin. The regional seismic and well-log data set allows for an accurate reconstruction of slope and basin-floor depositional patterns, lithologic compositions, and paleogradients from a continuous succession of bathyal strata that span the Miocene to the lower Pliocene. Variations in Miocene and Pliocene deepwater reservoirs can be linked to prevailing slope characteristics. The Miocene basin had a high-gradient, tectonically generated slope, and the Pliocene basin had a low-gradient constructional slope. The Miocene basin owes its steep margin to the tectonic stacking of early Tertiary, Laramide-age thrust sheets. The Miocene margin shed a mixture of coarse elastic sediments (sands, gravels, and cobbles) and fines (silts and clays) that were transported into the deep basin via turbidity currents and debris flows. Channelized deposits dominate the Miocene slope, and reservoirs occur in long-lasting basement-confined canyons and shorter-lived shallower erosional gulleys. Thick and areally-extensive basin-floor fans exist outboard of the strongly channelized Miocene slope. Fan distribution is strongly controlled by synsedimentary contractional anticlines and synclines. In contrast, the latest Miocene to early Pliocene basin development was dominated by a strongly prograding wedge of shelf and slope deposits that was induced by volcanogenic uplift and increased sediment supply. During this phase, turbidite reservoirs are limited to narrow and sinuous deepwater channels that reside at the toe of the constructional clinoforms and areally limited, thinner basinal fans.  相似文献   

15.
Sleeve-gun, 3.5-kHz, and 12-kHz profiles from the Labrador Slope provide the basis for an analysis of sedimentary facies, processes, and evolution of a continental slope adjacent to an ice margin. The upper slope is deeply incised by numerous canyons reflecting headward canyon branching. The less rugged middle-slope topography has fewer canyons and large slide and slump scars followed downslope by debris-flow deposits. Echo character of seismic profiles reflects the difference in sediment types supplied from mud-dominated sources and sand-, gravel- and till-dominated sources. On the rise, debris-flow deposits are largely confined to canyons. Intercanyon areas are dominated by spill-over turbidites alternating with hemipelagic sediments, which on some of the southern to southwestern levees occur in sediment-wave fields formerly attributed to bottom-current activity.  相似文献   

16.
The Wollaston Forland Basin, NE Greenland, is a half-graben with a Middle Jurassic to Lower Cretaceous basin-fill. In this outcrop study we investigate the facies, architectural elements, depositional environments and sediment delivery systems of the deep marine syn-rift succession. Coarse-grained sand and gravel, as well as large boulders, were emplaced by rock-falls, debris flows and turbulent flows sourced from the immediate footwall. The bulk of these sediments were point-sourced and accumulated in a system of coalescing fans that formed a clastic wedge along the boundary fault system. In addition, this clastic wedge was supplied by a sand-rich turbidite system that is interpreted to have entered the basin axially, possibly via a prominent relay ramp within the main fault system. The proximal part of the clastic wedge consists of a steeply dipping, conformable succession of thick-bedded deposits from gravity flows that transformed down-slope from laminar to turbulent flow behaviour. Pervasive scour-and-fill features are observed at the base of the depositional slope of the clastic wedge, c. 5 km into the basin. These scour-fills are interpreted to have formed from high-density turbulent flows that were forced to decelerate and likely became subject to a hydraulic jump, forming plunge pools at the base of slope. The distal part of the wedge represents a basin plain environment and is characterised by a series of crude fining upward successions that are interpreted to reflect changes in the rate of accommodation generation and sediment supply, following from periodic increases in fault activity. This study demonstrates how rift basin physiography directly influences the behaviour of gravity flows. Conceptual models for the stratigraphic response to periodic fault activity, and the transformation and deposition of coarse-grained gravity flows in a deep water basin with strong contrasts in slope gradients, are presented and discussed.  相似文献   

17.
运用近年来采集的高分辨率地震资料和多波束测深数据,在珠江海谷及西北次海盆深海平原区发现大规模发育的第四纪重力流沉积体系,该沉积体系沿珠江海谷以北西-南南东方向贯穿整个北部陆坡,进入西北次海盆后呈扇形展开,形成珠江海谷-西北次海盆大型深水浊积扇系统。据沉积体系空间展布特征差异,将珠江海谷划分为北、中、南三段,北段为过路侵蚀和水道下切,中段以水道充填和天然堤沉积为主,南段以水道-天然堤和朵叶体沉积共存为特征,揭示出北部陆坡珠江海谷是珠江口外陆缘物质输送海盆深海平原的主要通道;海盆区总体以朵叶体发育为特色,呈扇形展布。深水扇系统可分为三期次沉积体,其区域结构记录了重力流沉积物从侵蚀、卸载到南海海盆作为限制性盆地接收陆源沉积物的全过程,为“源-渠-汇”的研究构建了一个完美的范例。本文以珠江海谷-西北次海盆第四纪深水浊积扇沉积体系为例,完整地揭示了水道-扇体的组构和特征,清晰呈现了陆坡-海盆砂体展布的规律,可为建立南海北部新近纪早期深水扇形成模式提供参考,有助于指导南海深水油气勘探工作。  相似文献   

18.
The 1,500-km2 Gela slide and associated debris flow deposits cover most of the Gela foredeep basin (Sicily channel). The head of the slide follows the tip of the arcuate Gela nappe. A basin-wide detachment surface extends from the extensional slide head to a distal, contractional zone. The slide may be the result of a gravitational collapse which affected the sediments overlaying a remarkable decollement horizon. Mass movement processes resulted in the mobilization of a sedimentary sequence already deposited within the foredeep basin.  相似文献   

19.
《Marine and Petroleum Geology》2012,29(10):1953-1966
The presence of gas hydrate in the Ulleung Basin, East Sea (Japan Sea), inferred by various seismic indicators, including the widespread bottom-simulating reflector (BSR), has been confirmed by coring and drilling. We applied the standard AVO technique to the BSRs in turbidite/hemipelagic sediments crosscutting the dipping beds and those in debris-flow deposits to qualitatively assess the gas hydrate and gas concentrations. These BSRs are not likely to be affected by thin-bed tuning which can significantly alter the AVO response of the BSR. The BSRs crosscutting the dipping beds in turbidite/hemipelagic sediments are of low-seismic amplitude and characterized by a small positive gradient, indicating a decrease in Poisson’s ratio in the gas-hydrate stability zone (GHSZ), which, in turn, suggests the presence of gas hydrate. The BSRs in debris-flow deposits are characterized by a negative gradient, indicating decreased Poisson’s ratio below the GHSZ, which is likely due to a few percent or greater gas saturations. The increase in the steepness of the AVO gradient and the magnitude of the intercept of the BSRs in debris-flow deposits with increasing seismic amplitude of the BSRs is probably due to an increase in gas saturations, as predicted by AVO model studies based on rock physics. The reflection strength of the BSRs in debris-flow deposits, therefore, can be a qualitative measure of gas saturations below the GHSZ.  相似文献   

20.
西南太平洋劳海盆地质学研究进展   总被引:1,自引:0,他引:1  
劳海盆是西南太平洋的一个正在活动的边缘海之一,属于相对简单的洋内边缘海盆,一直以来被作为检验板块构造及海底扩张的一个理想地区。劳海盆的熔岩化学及岩石学的研究成果,对评价蛇绿岩套的源区及正常洋中脊背景中的洋壳模型具有非常重要的意义。此外,深入研究劳海盆出露的硫化物矿床的成因对现存于陆地上的古老类似矿床的勘探模型的建立扮演重要的作用。在系统阐述汤加弧-劳海盆系统的地质概况、构造地质学、岩石学及热液矿床研究进展的基础上,指出了劳海盆所存在的一些重要的科学问题,并指明了下一步研究的重点方向。利用2007年我国在执行环球考察第19航次期间所获得的岩石、硫化物样品,开展对劳海盆岩浆-构造-热液成矿系统的综合研究,有利于提高我国对边缘海盆的基础研究水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号