首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied a large (12 × 22 × 30 cm) spinel lherzolite xenolith with undeformed margins in alkali basalt (basanite) from the eroded crater of Late Cenozoic Shavaryn Tsaram-1 volcano in western Mongolia. The xenolith was sampled along its median transversal profile, at every 15–20 mm for bulk chemistry of lherzolite and basalt (ICP-MS) and at 4–10 mm for the chemistry of olivine, orthopyroxene, clinopyroxene, and Cr-spinel minerals, and of material filling cracks (LA ICP-MS). Incompatible elements (especially, LREE) are distributed unevenly over the xenolith, both in lherzolite and in its constituent minerals, as well as in crack-filling material, with abnormal LREE enrichment in some specimens. Judging by the measured trace-element spectra compared with the model patterns, incompatible elements reside in different amounts as interstitial impurity in cracks inside and between mineral grains in lherzolite, also being a substitutional impurity in the lherzolite constituent minerals. Experimental acid leaching of specimens from sites of high crack density showed (La/Yb)n ratios in the crack fill to be much higher than in the basalt host and more so in bulk lherzolite (180 against 33 and 1.5–3.6, respectively). The proportional contents of P and Ca in the leaching solution, especially in that from the xenolith’s center mark the presence of an apatite microphase, which can be a LREE repository.The observed patterns of LREE and other incompatible elements in the xenolith and in the host alkali basalt fit a model implying that mobile elements residing as interstitial impurity came with fluids which were released from rising basaltic magma and percolated into the xenolith along cracks.  相似文献   

2.
Earthquakes can trigger slope instability, especially in the case of slopes with cracks. Studies of slope stability rarely account for the presence of cracks. In this study, the upper bound limit analysis technique and the pseudo-static method were used to examine the stability of homogeneous slopes with cracks subjected to seismic loading. A series of stability charts for slope inclinations of 2:1 (β = 63.4°), 1:1 (β = 45°), 2:3 (β = 33.7°), and 1:2 (β = 26.6°) (vertical to horizontal) and internal friction angles, φ, of 10°, 20°, 30°, and 40° are presented. These charts should be useful for readily determining the stability number (critical slope height), the critical crack depth, and the region affected by cracks for cracks of known depth but unknown location, cracks of known location but unspecified depth, and cracks of unspecified depth and location.  相似文献   

3.
Torsion experiments were performed on synthetic aggregates of calcite with a 50% volume of muscovite. The tests were performed at 627–727 °C with a confining pressure of 300 MPa at constant shear strain rates of 3 × 10?5–3 × 10?4 s?1 on cylindrical samples with the starting foliation parallel and perpendicular to the cylinder axis. Both the foliation parallel and the foliation perpendicular experiments show similar stress–strain patterns, with an initial hardening stage followed by significant strain weakening (>60%) before a catastrophic rupture. Microstructural analysis shows that in low-strain experiments calcite grains are intensely twinned while muscovite grains appear slightly bent and kinked. Higher strains promote a segregation of the two phases with calcite forming thin layers of fine, dynamically recrystallized grains, which act as localized shear bands, while muscovite grains keep their original size and rotate assuming a strong shape preferred orientation. This strain localization of the calcite from an initially homogeneous rock produced catastrophic failure at moderate bulk shear strains (γ  3). Localization of the strain first involved ductile deformation to produce a new calcite layering with fine dynamically recrystallized grains along which cavities nucleated. The orientation and kinematics of the cavities are comparable to R1 Riedel structures. All experiments on calcite–muscovite mixtures resulted in heterogeneous strain. In these torsion experiments chemical changes and crystallization of new phases (anorthite and kalsilite) are observed at 627 °C. Whereas, samples hot pressed or deformed in compression at 670 °C did not show such reactions or any localization. The effect of stress-field geometry and pore pressure upon mineral reactions is discussed. It is concluded that deformation-induced heterogeneous phase distributions caused local strength differences initiating strain localization in the calcite–muscovite mixtures, eventually leading to plastic failure.  相似文献   

4.
This paper investigates the influence of a flaw on crack initiation, the failure mode, deformation field and energy mechanism of the rock-like material under uniaxial compression. The results of laboratory test and numerical simulation demonstrate the flaw inclination effect can be classified into three groups: 0–30°, 30–60° and 75–90°. The characteristic stresses increase as the flaw angle increases. The tensile cracks initiate from gentle flaws (α  30°) and shear cracks appear at tips of steep flaws (α  45°). The input energy, strain energy and dissipation energy of a specimen show approximate increasing trends as the flaw angle increases.  相似文献   

5.
In situ U–Pb dating and trace element analysis of zircons, combined with a textural relationship investigation in thin section, is a powerful tool to constrain the ultra high-pressure stage of high-grade metamorphism. Two types of zircon grains have been identified in thin sections of a retrograde eclogite from the main hole of the Chinese Continental Scientific Drill project in the Sulu UHP terrane. Type 1 zircon grains occur as inclusions in fresh garnet and omphacite, and Type 2 zircon grains were found in symplectite around omphacite. The fresh rims of Type 1 zircons and mantles of a few Type 2 zircons exhibit remarkably lower REE, Y, Nb and Ta contents than the inherited zircon cores, suggesting coeval growth with garnet, rutile and apatite during UHP metamorphism. These may have formed in the UHP metamorphism and survived retrograde metamorphism. The weighted average 206Pb/238U age of these zircon domains (230 ± 4 Ma, 2σ) agrees well with the published age of coesite-bearing zircon separates (230 ± 1 Ma, 2σ), suggesting that the peak UHP metamorphism in the Sulu terrane may have occurred at ~ 230 Ma.Zircon domains surrounded or cut across by symplectite could have been altered by retrograde metamorphism. Together, they provide a younger weighted average 206Pb/238U age of 209 ± 4 Ma (2σ). These retrograde zircon domains have similar REE compositions to the ~ 230 Ma UHP zircon domains. These observations imply that the ~ 209 Ma zircon domains could have formed by fluid activity-associated alterations in the amphibolite-facies metamorphism, which could have resulted in the complete loss of Pb but not REEs in these domains.  相似文献   

6.
Eclogites occur as a tectonic slice within a metabasite-phyllite-marble unit of the Karakaya Complex in northwest Turkey. The high-pressure mineral assemblage in eclogite is mainly composed of garnet + omphacite + glaucophane + epidote + quartz. Trace element characteristics of rutile and Zr-in-rutile temperatures were determined for eclogites from the Karakaya Complex. Core-rim analyses of rutile grains yield remarkable trace element zoning with lower contents of Zr, Nb and Ta in the core than in the rim. The variations in Zr, Nb and Ta can be ascribed to growth zoning rather than diffusion effects. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents, which could be ascribed to the effect of metamorphic dehydration in subduction zones on rutile Nb/Ta differentiation. The rutile grains from eclogites in the Karakaya Complex are dominated by subchondritic Nb/Ta and Zr/Hf ratios. It can be noted that subchondritic Nb/Ta may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration.The Zr contents of all rutile grains range between 81 and 160 ppm with an average of 123 ppm. The Zr-in-rutile thermometry yields temperatures of 559–604 °C with an average temperature of 585 °C for eclogites from the Karakaya Complex. This average temperature suggests growth temperature of rutile before peak pressure during the subduction. However, some rutile grains have higher Zr contents in the outermost rims compared to the core. Zr-in-rutile temperatures of the rims are about 20 °C higher than those of the cores. This suggests that the outermost rims would have grown from a distinct fluid at higher temperatures than that of the cores. Moreover, Zr contents and calculated temperatures in both inclusion rutile and matrix rutile from eclogites are identical, which suggests that eclogites within the Karakaya Complex belong to the same tectonic slice and underwent similar metamorphic evolution.  相似文献   

7.
Lavas in Alexandra Land Island of the Franz Josef Land Archipelago bear Au-Cu-Pd-type mineralization. The found mineral species belong to the Cu-Au-Pd and Pd-Cu-(Te + Sb + S + As) systems being, respectively, (i) cuproauride (Au(Cu, Pd)) and auricupride (Au(Cu,Pd)3) and (ii) phases similar to skaergaardite (PdCu), nielsenite (PdCu3), and numerous S-Te-Sb-Pd-Cu phases of various compositions. The morphology of PGM existing as tiny grains and films along the boundaries of plagioclase and clinopyroxene and in cracks, their crystallization at low temperatures predicted by experimental data, and the presence of native copper with sulfur impurity are signatures of postmagmatic origin. The Alexandra Land tholeiitic basalts and dolerites were, most likely, produced by the hotspot which may be the source of PGE-bearing intrusions in eastern Greenland that contain PGM similar to those discussed in the paper.  相似文献   

8.
The combination of ion microprobe dating and cathodoluminescence (CL) imaging of zircons from a high-grade rock from the Central Zone of the Limpopo Belt were used to constrain the age of metamorphic events in the area. Zircon grains extracted from an orthopyroxene-gedrite-bearing granulite were prepared for single crystal CL-imaging and ion microprobe dating. The grains display complex zoning when using SEM-based CL-imaging. A common feature in most grains is the presence of a distinct core with a broken oscillatory zoned structure, which clearly appears to be the remnant of an original grain of igneous origin. This core is overgrown by an unzoned thin rim measuring about 10–30 μm in diameter, which is considered as new zircon growth during a single metamorphic event. Selected domains of the zircon grains were analysed for U, Pb and Th isotopic composition using a CAMECA IMS 1270 ion microprobe (Nordsim facility). Most of the grains define a near-concordant cluster with some evidence of Pb loss. The most concordant ages of the cores yielded a weighted mean 207Pb/206Pb age of 2689 ± 15 (2σ) Ma, interpreted as the age of the protolith of an igneous origin. The unzoned overgrowths of the zircon grains yielded a considerably younger weighted mean 207Pb/206Pb age of ∼2006.5 ± 8.0 Ma (2σ), and these data are interpreted to reflect closely the age of the ubiquitous high-grade metamorphic event in the Central Zone. This study shows clearly, based on both the internal structure of the zircons and the data obtained by ion microprobe dating, that only a single metamorphic event is recorded by the studied 2.69 Ga old rocks, and we found no evidence of an earlier metamorphic event at ∼2.5 Ga as postulated earlier by some workers.  相似文献   

9.
The microstructures and microtexture of omphacite spherulites from an eclogite-facies pseudotachylyte from central Zambia was studied by electron backscattered diffraction and transmission electron microscopy. The spherulitic growth is characteristic for fast growth rates at high undercoolings resulting from quenching a melt of seismic origin to the eclogite-facies conditions. Its preservation constrains that no significant deformation was present after the seismic event and during uplift. The analysis of grain misorientations in spherulites indicates – in addition to the overall radial alignment of grains – that crystallization took place in a highly viscous medium, which does not allow grain reorientation during growth. The microstructure of omphacite is diverse and ambiguous: Grain contacts appear both curved and with 120° triple junctions with few recrystallized grains. Dislocations are frequent, but heterogeneously distributed and occur in dislocations networks, subgrain boundaries and as free dislocations with locally high densities. Planar defects (chain multiplicity faults parallel (0 1 0) ending at partial dislocations) are abundant, while twinning parallel to (1 0 0) is rare. Anti-phase domains with variable domain sizes within a single grain and the disappearance of domain walls around the planar defects constrain that most of the microstructure must be formed during or shortly after crystallization.Omphacite microstructures are commonly discussed as result of deformational stresses due to a tectonic forcing. Here, we hypothesize that thermal stress during growth also can provide a feasible explanation for this melt-grown omphacite followed with partial recovery under static conditions. The observation does not exclude repeated stress loading of the shear veins in general, but suggest that only the latest seismic event is preserved in the studied samples as fine-grained texture of the spherulites. Moreover, anti-phase domain sizes constrain that the rock must be uplifted rather shortly after the seismic event.  相似文献   

10.
In this paper, we present U–Pb ages and trace element compositions of titanite from the Ruanjiawan W–Cu–Mo skarn deposit in the Daye district, eastern China to constrain the magmatic and hydrothermal history in this deposit and provide a better understanding of the U–Pb geochronology and trace element geochemistry of titanite that have been subjected to post-crystallization hydrothermal alteration. Titanite from the mineralized skarn, the ore-related quartz diorite stock, and a diabase dike intruding this stock were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Titanite grains from the quartz diorite and diabase dike typically coexist with hydrothermal minerals such as epidote, sericite, chlorite, pyrite, and calcite, and display irregular or patchy zoning. These grains have low LREE/HREE and high Th/U and Lu/Hf ratios, coupled with negative Eu and positive Ce anomalies. The textural and compositional data indicate that titanite from the quartz diorite has been overprinted by hydrothermal fluids after being crystallized from magmas. Titanite grains from the mineralized skarn are texturally equilibrated with retrograde skarn minerals including actinolite, quartz, calcite, and epidote, demonstrating that these grains were formed directly from hydrothermal fluids responsible for the mineralization. Compared to the varieties from the quartz diorite stock and diabase dike, titanite grains from the mineralized skarn have much lower REE contents and LREE/HREE, Th/U, and Lu/Hf ratios. They have a weighted mean 206Pb/238U age of 142 ± 2 Ma (MSWD = 0.7, 2σ), in agreement with a zircon U–Pb age of 144 ± 1 Ma (MSWD = 0.3, 2σ) of the quartz diorite and thus interpreted as formation age of the Ruanjiawan W–Cu–Mo deposit. Titanite grains from the ore-related quartz diorite have a concordant U–Pb age of 132 ± 2 Ma (MSWD = 0.5, 2σ), which is 10–12 Ma younger than the zircon U–Pb age of the same sample and thus interpreted as the time of a hydrothermal overprint after their crystallization. This hydrothermal overprint was most likely related to the emplacement of the diabase dike that has a zircon U–Pb age of 133 ± 1 Ma and a titanite U–Pb age of 131 ± 2 Ma. The geochronological results thus reveal two hydrothermal events in the Ruanjiawan deposit: an early one forming the Wu–Cu–Mo ores related to the emplacement of the quartz diorite stock and a later one causing alteration of the quartz diorite and its titanite due to emplacement of diabase dike. It is suggested that titanite is much more susceptible to hydrothermal alteration than zircon. Results from this study also highlight the utilization of trace element compositions in discriminating titanite of magmatic and hydrothermal origins, facilitating a more reasonable interpretation of the titanite U–Pb ages.  相似文献   

11.
Most skarn deposits are closely related to granitoids that intruded into carbonate rocks. The Cihai (>100 Mt at 45% Fe) is a deposit with mineral assemblages and hydrothermal features similar to many other typical skarn deposits of the world. However, the iron orebodies of Cihai are mainly hosted within the diabase and not in contact with carbonate rocks. In addition, some magnetite grains exhibit unusual relatively high TiO2 content. These features are not consistent with the typical skarn iron deposit. Different hydrothermal and/or magmatic processes are being actively investigated for its origin. Because of a lack of systematic studies of geology, mineral compositions, fluid inclusions, and isotopes, the genetic type, ore genesis, and hydrothermal evolution of this deposit are still poorly understood and remain controversial.The skarn mineral assemblages are the alteration products of diabase. Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observations, which show a prograde skarn stage (garnet-clinopyroxene-disseminated magnetite), a retrograde skarn stage (main iron ore stage, massive magnetite-amphibole-epidote ± ilvaite), and a quartz-sulfide stage (quartz-calcite-pyrite-pyrrhotite-cobaltite).Overall, the compositions of garnet, clinpyroxene, and amphibole are consistent with those of typical skarn Fe deposits worldwide. In the disseminated ores, some magnetite grains exhibit relatively high TiO2 content (>1 wt.%), which may be inherited from the diabase protoliths. Some distinct chemical zoning in magnetite grains were observed in this study, wherein cores are enriched in Ti, and magnetite rims show a pronounced depletion in Ti. The textural and compositional data of magnetite confirm that the Cihai Fe deposit is of hydrothermal origin, rather than associated with iron rich melts as previously suggested.Fluid inclusions study reveal that, the prograde skarn (garnet and pyroxene) formed from high temperature (520–600 °C), moderate- to high-salinity (8.1–23.1 wt.% NaCl equiv, and >46 wt.% NaCl equiv) fluids. Massive iron ore and retrograde skarn assemblages (amphibole-epidote ± ilvaite) formed under hydrostatic condition after the fracturing of early skarn. Fluids in this stage had lower temperature (220°–456 °C) and salinity (8.4–16.3 wt.% NaCl equiv). Fluid inclusions in quartz-sulfide stage quartz and calcite also record similar conditions, with temperature range from 128° to 367 °C and salinity range from 0.2 to 22.9 wt.% NaCl equiv. Oxygen and hydrogen isotopic data of garnet and quartz suggest that mixing and dilution of early magmatic fluids with external fluids (e.g., meteoric waters) caused a decrease in fluid temperature and salinity in the later stages of the skarn formation and massive iron precipitation. The δ18O values of magnetite from iron ores vary between 4.1 and 8.5‰, which are similar to values reported in other skarn Fe deposits. Such values are distinct from those of other iron ore deposits such as Kiruna-type and magmatic Fe-Ti-V deposits worldwide. Taken together, these geologic, geochemical, and isotopic data confirm that Cihai is a diabase-hosted skarn deposit related to the granitoids at depth.  相似文献   

12.
李露露  高永涛  周喻  金爱兵 《岩土力学》2018,39(10):3668-3676
三叉裂隙是自然界普遍存在的一种岩体缺陷形式,其对岩体的力学特性有重要影响。对含预制三叉裂隙的水泥砂浆试样进行室内单轴压缩试验,配合使用摄像机拍摄裂纹的起裂、扩展、贯通过程,通过数字图像技术处理获取试样的应变场云图,并结合PFC2D程序研究不同?、? 条件下试样的强度特征、裂纹模式和裂纹演化扩展规律。研究表明:三叉裂隙对试样单轴抗压强度有明显的削弱作用。当? 恒定为120°时,试样在? = 30°时达到最大抗压强度;当? 恒定为90°时,随?增大,试样抗压强度呈先减小后增大的趋势,且当? = 45°时达到最大抗压强度。试样产生的裂纹可分为3类,分别是张拉型裂纹(Ⅰ型裂纹)、剪切型裂纹(Ⅱ型裂纹)、混合型裂纹(Ⅲ型裂纹)。这3类裂纹通常从裂隙尖端开始产生,并且Ⅰ型裂纹沿加载方向扩展,通常未扩展至试样边界;Ⅱ型和Ⅲ型裂纹通常与加载方向呈一定角度扩展至试样边界。通过对裂纹的几何形态和组成宏观裂纹的微裂纹成分的分析,得知导致含三叉裂隙试样在单轴压缩条件下失效的是张拉破坏。数字图像技术得到的应变云图表明,当载荷达到一定阶段,裂隙尖端出现应力集中,微破裂开始发育并聚集成微破裂区,微破裂区扩大产生宏观裂纹。通过对主应变和剪应变云图分析,发现导致试样失效的是张拉破坏,剪应变在裂纹扩展过程中的影响较小。  相似文献   

13.
Retrograde eclogite from the central part of the Qinling Complex, Zhaigen area of the North Qinling Belt, was studied using integrated petrology, mineral chemistry, pseudosection modeling, and geochronology. Microstructures and mineral relationships reveal five metamorphic stages and associated mineral assemblages as follows: (1) pre-peak stage M1, which is recorded by the inner cores of garnets together with mineral inclusions of clinopyroxene (Cpx1) + amphibole (Am1) + plagioclase (Pl1) ± quartz ± rutile, occurred under conditions of 760–770 °C and 11.4–14.0 kbar; (2) eclogite-facies stage M2, recorded by garnet cores + relic omphacite (with a high jadeite content up to 31%) + rutile + quartz under conditions of > 16.7 kbar and 679–765 °C; (3) high-pressure granulite-facies stage M3, characterized by clinopyroxene (Cpx2) + plagioclase (Pl2) symplectites under conditions of 14.5–15.6 kbar and 800–850 °C; (4) medium-pressure granulite-facies stage M4, characterized by the growth of plagioclase + orthopyroxene coronas around garnet under conditions of 8.3–10 kbar and 795–855 °C; and (5) retrogressive amphibolite-facies stage M5, which is represented by amphibole (Am3) + plagioclase (Pl3) kelyphitic rims around garnet at conditions of < 4 kbar and < 620 °C. Based on Laser Raman analysis of mineral inclusions, cathodoluminescence images, in situ trace element concentrations from different domains within zircon grains, and LA-ICP-MS and SHRIMP U–Pb dating, the protolith age of the Zhaigen retrograde eclogite is suggested at 786 ± 10 Ma and the eclogite-facies metamorphic age recorded by metamorphic zircon cores is limited within 501–497 Ma. The retrograde zircon rims display ages of 476–447 Ma and 425 Ma that probably reflect the timing of two stages of retrograde metamorphism, respectively. The mineral assemblages, PT conditions, and zircon U–Pb data define a clockwise PTt path for the retrograde eclogite, suggesting that the Neoproterozoic protolith of the retrograde eclogite might evolved into continental subduction and eclogite-facies metamorphism during 501–497 Ma before undergoing retrograde metamorphism during an initial stage of exhumation to middle–upper crust level at 474–447 Ma and subsequent exhumation to shallow upper crust at ~ 420 Ma.  相似文献   

14.
A 2000 km long dextral Talas-Fergana strike–slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar–Ar dating of micas. We also carried out a U–Pb–Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U–Pb zircon SHRIMP ages 728 ± 11 Ma and 778 ± 11 Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and their calculated tHfc ages varied from 2.42 to 2.71 Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279 ± 5 Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and calculated tHfc ages from 2.42 to 2.71 Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300–400 °C and caused resetting of the K–Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar–Ar muscovite age of 241 Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a “minimum” age of dextral motions along this section of the fault in the Triassic while younger ages varying from 227 Ma to 199 Ma with typical staircase patterns indicate protracted growth and recrystallization of micas during ductile deformations which continued until the end of the Triassic.  相似文献   

15.
The Hujiayu Cu deposit, located in the Zhongtiao Mountains district of southern North China Craton, is hosted by graphite schist and dolomitic marble with disseminated to veinlet (stage I) and thick vein (stage II) mineralization. Stage I mineralization, characterized by stratabound, disseminated pyrite and chalcopyrite within the graphite schist host rock, formed at the syn-metamorphic stage. Graphite geothermometry showed that the host rock was subjected to an upper-greenschist to lower amphibolite metamorphism at a temperature range of 486 to 596 °C, averaging of 546 ± 35 °C (1 σ, n = 19). Stage II mineralization, consisting of brecciated dolomitic thick veins cemented by quartz-sulfide assemblages, was a product of metamorphic hydrothermal activity. This thick vein was subdivided into an early hydrothermal dolomitic alteration composing of dolomitic breccia with some cobaltiferous pyrite (stage IIa) and a late siliceous-copper mineralization consisting of quartz-sulfide assemblages (stage IIb). A clausthalite–siegenite–sphalerite–chalcopyrite mineral assemblage was observed in stage IIb, constraining the sulfur fugacity and selenium fugacity within − 18.7 to − 11.7 and − 21.7 to − 14.7, respectively. It was inferred stage IIb was marked by a drop in sulfur fugacity and a substantial increase in selenium fugacity after the major chalcopyrite precipitation. Calculations based on the compositions of cobaliterous pyrite and sphalerite reveal that the mineral assemblage at stage IIa formed at an approximately temperature range of 400 to 300 °C, whereas the minerals in stage IIb occurred at temperature of 256 ± 9 °C (1 σ, n = 7). Sulfides from stage I have δ34S value ranging from 10.1 to 22.2‰ with an average value of 16.9 ± 3.4‰ (1 σ, n = 27), supporting the model that sulfides precipitated through thermochemical reduction of sulfate at sedimentary stage followed by metamorphic homogenization of δ34S isotopic signatures. Sulfides from the stage II have δ34S values in highly variable ranging from 3.4 to 19.2‰, indicating a rather complex source. Four chalcopyrite samples yielded a weighted model age of 1952 ± 39 Ma (1 σ, MSWD = 1.5), suggesting that the copper mineralization formed synchronously with regional metamorphism (1970–1850 Ma) and hence a Paleoproterozoic metamorphogenic copper mineralization is implicated. Therefore, we envisaged disseminated-veinlet mineralization formed during a metamorphic peak and the major hydrothermal copper mineralization occurred during the retrograde cooling.  相似文献   

16.
We present U–Pb zircon age determinations of two Variscan ultrapotassic plutonic rocks from the Moldanubian Zone (Bohemian Massif). Equant, multifaceted zircons without inherited cores from a two-pyroxene–biotite quartz monzonite of the Jihlava Pluton yielded a precise age of 335.12 ± 0.57 Ma, interpreted as dating magma crystallization. The majority of both tabular and prismatic grains from the amphibole–biotite melagranite (“durbachite”) from the T?ebí? Pluton plot along a discordia intersecting the concordia at 334.8 ± 3.2 Ma; prismatic zircon grains commonly contain inherited cores and yield an upper intercept age of 2.2 Ga, indicating early Proterozoic inheritance. We therefore suggest that both types of the ultrapotassic plutonic rocks from the Bohemian Massif crystallized at ca 335 Ma, and the previously published ages higher than ca 340 Ma for “durbachites” were biased by a small amount of unresolved inheritance. The ultrapotassic magma emplacement in the middle crust was related to rapid exhumation of a deep crustal segment, considered as isothermal decompression between high-pressure (~ 340 Ma) and medium-pressure (~ 333 Ma) stages recorded in granulites. Mineral assemblages as well as external and internal zircon morphology suggest that the Jihlava intrusion was deep and dry, whereas the T?ebí? intrusion was shallow and wet. Low εHf values of zircons (? 4.4 to ? 7.5) in both rock types suggest a similar source with a predominant crustal component. However, inherited grains in the T?ebí? melagranite indicate its contamination with crustal material during emplacement, and thus possibly a slower rate of exhumation and/or of magma ascent through the crust.  相似文献   

17.
The Paraguay belt comprises a thick sedimentary succession deposited on the southwestern border of the Amazonian Craton and the Rio Apa Block. The base of the succession in the southern Paraguay belt is marked by a level of glacially derived deposits from the Puga Formation associated with banded iron formations, which has been assumed to be end-Cryogenian in age (635 Ma) by previous authors is spite of the lack of geochronological data. Here we present the first U–Pb SHRIMP ages on detrital zircon grains separated from the matrix of six samples of these diamictites two different localities (Puga Hill and Bodoquena area). U–Pb ages determined from two samples (ca. 130 grains) of Puga Hill show a large variation between 970 Ma and 2100 Ma. Rocks with these ages can be found in the Amazonian Craton suggesting that it is the most probable source of the sediments. Detrital zircons (ca. 230 grains) from the Bodoquena area (about 200 km south of Puga Hill) range from 706 to 1990 Ma. The 1760 Ma source is significantly more important in these samples, comprising more than 70% of analyzed grains, and indicates provenance from the adjacent Rio Apa Block. The youngest zircon was dated at 706 ± 9 Ma, thus constraining the maximum depositional age for the Puga Formation. Possible sources for this younger population could be either the juvenile Mara Rosa magmatic arc in the Brasilia belt, or the rocks from the Laurentian external fold belts located to the west of the sampled area in Neoproterozoic paleogeographic reconstructions. The maximum depositional age of the diamictites (and associated BIFs), together with cap carbonate carbon and strontium isotope data (δ13C = ? 5.0 and 87Sr/86Sr = 0.7077) in Puga Hill, indicate that they were deposited after 700 Ma, suggesting that they may represent the end-Cryogenian event.  相似文献   

18.
The normal and shear strains obtained in torsion shear tests may be interpreted in two different ways to gain insight into (1) the type of plastic potential to be employed in hardening plasticity stress–strain models, and (2) the coincidence in physical space of the plastic strain increment direction with the stress direction during principal stress rotation. Thirty-four drained torsion shear tests were performed on hollow cylinder specimens of Santa Monica Beach sand deposited by dry pluviation. Twenty-six tests were performed on tall specimens with height of 40 cm, and eight tests were performed on short specimens with height of 25 cm to investigate the effect of the specimen height on the soil behavior in hollow cylinder specimens. Each test was conducted with the same, constant inside and outside confining pressure, σr, thus tying the value of b = (σ2σ3)/(σ1σ3) to the inclination, β, of the major principal stress. The directions of strain increment vectors at failure are compared with the directions corresponding to associated and non-associated flow. The relation between the directions of major principal strain increment and major principal stress during rotation of principal stress axes in physical space are investigated.  相似文献   

19.
《Gondwana Research》2014,25(3-4):1038-1050
The New England Orogen of easternmost Australia is dominated by suites of Palaeozoic to earliest Mesozoic rocks that formed in supra-subduction zone settings at Gondwana's eastern margin. On the northern New South Wales coast at Rocky Beach, Port Macquarie, a serpentinite mélange carries rare tectonic blocks of low-grade, high-pressure, metamorphic rocks derived from sedimentary and igneous protoliths. Dominant assemblages are glaucophane + phengite ± garnet ± lawsonite ± calcite ± albite blueschists and lawsonite-bearing retrogressed garnet + omphacite eclogites. In some blocks with sedimentary protoliths, eclogite forms folded layers within the blueschists, which is interpreted as Mn/(Mn + Fe) compositional control on the development of blueschist versus eclogite assemblages. Review of previous studies indicates pressure–temperature conditions of 0.7–0.5 GPa and ≤ 450 °C. Three samples of high-pressure metasedimentary rocks contain Archaean to 251 ± 6 Ma (Permo-Triassic) zircons, with the majority of the grains being Middle Devonian to Middle Carboniferous in age (380–340 Ma). Regardless of age, all grains show pitting and variable rounding of their exteriors. This morphology is attributed to abrasion in sedimentary systems, suggesting that they are all detrital grains. New in situ metamorphic zircon growth did not develop because of the low temperature (≤ 450 °C) of metamorphism. The Permo-Triassic, Devonian and Carboniferous zircons show strong heavy rare earth element enrichment and negative europium anomalies, indicating that they grew in low pressure igneous systems, not in a garnet-rich plagioclase-absent high pressure metamorphic environment. Therefore the youngest of these detrital zircons provides the maximum age of the metamorphism. A titanite + rutile porphyroblast within an eclogite has a U–Pb age of 332 ± 140 Ma (poor precision due to very low U abundances of mostly < 1 p.p.m.) and provides an imprecise direct age for metamorphism. In the south of the Port Macquarie area, the Lorne Basin ≥ 220 Ma Triassic sedimentary and volcanic rocks unconformably overlie serpentinite mélange, and provide the minimum age of the high-pressure metamorphism. Our preferred interpretation is that the 251 Ma zircons are detrital and thus the Port Macquarie high-pressure metamorphism is constrained to the end of the Permian–Early Triassic. Emplacement of the serpentinite mélange carrying the Rocky Beach high-pressure rocks might have been due to docking of a Permian oceanic island arc (represented by the Gympie terrane in southern Queensland?) and an Andean-style arc at the eastern Australian margin (expressed in the New England Orogen by 260–230 Ma north-south orientated magmatic belts). Alternatively, if the 251 Ma grains are regarded as having grown in thin pegmatites, then the dominant Devonian–Carboniferous detrital population still indicates a maximum age for the high pressure metamorphism of ca. 340 Ma. A ≤ 340 Ma age of metamorphism would still be much younger than the previously suggested ca. 470 Ma (Ordovician) age, which was based on Ar–Ar dating of phengites.  相似文献   

20.
U–Pb ages, trace elements, and Hf isotope compositions of zircons from the Mayuan migmatite complex in NW Fujian province have been determined to provide constraints on the source and genesis of anatexis and tectonothermal evolution related to the Caledonian orogeny in South China. The migmatites investigated consist of various amounts of mesosome, leucosome, and melansome. Zircons extracted from mesosome, leucosome, and granite samples are characterized by oscillatory overgrowths enclosing inherited cores or occur as newly grown grains. The ages of the inherited zircons from the leucosome and granite samples are consistent with those of adjacent basement paragneiss in the study area, suggesting that both leucosome and granite were generated by partial melting of the latter. A comparison of Hf isotopes between the newly-formed zircons and inherited cores indicates that the former resulted from the breakdown of preexisting inherited zircons and/or less Hf-rich minerals other than zircons at the source. One mesosome sample contains typical metamorphic zircons that yielded a weighted mean 206Pb/238U age of 453 ± 3 Ma. They show enrichments in heavy REEs (LuN/LaN up to 22,709), indicating their growth prior to garnet crystallization. The other mesosome sample, in contrast, contains both newly-formed metamorphic rims and grains that gave a weighted mean 206Pb/238U age of 442 ± 8 Ma. They are characterized by relatively low Th/U ratios, depletions in heavy REEs (LuN/LaN = 117–396), and low 176Lu/177Hf ratios, suggesting their growth synchronous with garnet crystallization. The U–Pb ages of the mesosome samples are interpreted as recording the time of early (ca. 453 Ma) to peak (442 Ma) stages of a regional metamorphic event. Two leucosome and two granite samples yield consistent U–Pb ages of 438 ± 5 Ma to 442 ± 4 Ma, which provide constraints on the timing of subsequent anatexis and magmatism. The geochronological data reported here reveal a consecutive sequence of regional metamorphism, anatexis, and magmatism in NW Fujian province, lasting for at least 15 Myr, which was driven by the Caledonian orogeny that have affected a major part of the SCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号