首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The profiles of six photospheric absorption spectral lines (Fei 5250 Å, Fei 5324 Å, Fei 5576 Å, Cai 5590 Å, Cai 6103 Å and Fei 6165 Å), measured in the kernel of a 2N solar flare and in a quiet-Sun area, were compared. The observations were carried out with an echelle spectrograph of the Crimean Astrophysical Observatory. It was shown that, compared to the quiet-Sun profiles, the flare profiles are shallower in the line core and are less steep in the wings. Therefore, measurements of the longitudinal magnetic field made with a magnetograph system which uses the Cai 6103 Å  spectral line, can be underestimated by 18–25% in areas of bright H ribbons of a moderate solar flare. Modeling of the solar photosphere performed by using a synthesis method showed that, in a solar flare, the enhanced core emission seems to be related to heating of the photosphere by the flare, whereas the decrease of the slope of the wings was presumably caused by the inhomogeneity of the photospheric magnetic field.  相似文献   

2.
Doppler dimming of the Ovi resonance lines (1032 Å, 1037 Å) in an expanding corona is calculated including the pumping effect on the Ovi 1037.61 Å of both Cii lines at 1036.34 Å and 1037.02 Å, and the effect of the width of the absorption profiles of the coronal oxygen ions along the incident radiation. The pumping effect of the Cii line at 1036.34 Å allows us to extend to approximately 450 km s–1 the measurement of solar wind velocities with the Ovi line ratio technique. Since the emissivity ratio of the Ovi doublet depends on the width of the oxygen coronal absorbing profiles, this ratio can provide an accurate measurement of the solar wind velocity in the case that the width of the absorbing profile along the direction of the incident radiation is independently determined. However, if on the one hand the ratio of the emissivities of the Ovi doublet has limitations in probing the wind velocity, on the other hand it can be used as a diagnostics for inferring the velocity distribution of the coronal Ovi ions along the radial, and detecting possible velocity anisotropies. This diagnostics, applied to recent observational results, allows us to infer that the velocity distribution of the oxygen ions is much broader in the direction perpendicular to the magnetic field direction, and that the acceleration of the fast solar wind in the first 2 solar radii is high.  相似文献   

3.
Innes  D.E.  McKenzie  D.E.  Wang  Tongjiang 《Solar physics》2003,217(2):247-265
On 21 April 2002 a large eruptive flare on the west limb of the Sun developed a bright, very dynamic, post-flare arcade. In TRACE 195 Å images, a series of dark, sunward moving flows were seen against the bright extreme ultraviolet (EUV) arcade. SUMER obtained a series of spectra of the dark EUV flows in the lines Cii, Fexii, and Fexxi at a fixed position above the limb. These spectra give spatially resolved line-of-sight velocities and emission measures for the arcade plasma over a temperature range 2×104 to 107 K. The flows are dark in all SUMER lines. The UV continuum longward (1350 Å) and shortward (675 Å) of the hydrogen Lyman limit is used to determine whether the dark 195 Å inflows are due to regions of low plasma density (plasma voids) or cold absorbing material. There is some evidence of absorption near the front of one of the inflows; however, along most of the dark channels there is no change in continuum ratio and we therefore conclude, as originally suggested by McKenzie and Hudson (1999), that they are plasma voids.  相似文献   

4.
You  Jianqi  Hiei  Eijiro  Li  Hui 《Solar physics》2003,217(2):235-245
After carefully comparing the white-light (5600±00 Å) and the slit-jaw H images (0.5 Å  passband) of the 2N/X20 white-light flare of 16 August 1989, we found that the H counterpart identification of the bright kernels in continuum by Hiei, Nakagomi, and Takuma (1992) was incorrect. Now we come to the conclusion that none of the two white-light kernels has a corresponding bright H area. Moreover, the loop shapes in white-light are also different from those in H. H loops rose more rapidly than white-light loops. However, their height–time variations on the whole are similar. This indicates that the continuum and chromospheric emissions of the flare presumably come from different plasmas, but may be modulated by some mutual factors, such as large-scale magnetic fields. Analysis of the Hei 10830 Å spectra taken simultaneously with the slit-jaw H images shows that the line-center intensity of Hei 10830 Å doesn't have a good correlation with the intensity of nearby continuum, which supports the above conclusions. In addition, the electron density at the white-light loop top estimated from the continuum around 5600 Å  and 10830 Å  is as high as 1012–1013 cm–3.  相似文献   

5.
Thompson  William T.  Brekke  PÅl 《Solar physics》2000,195(1):45-74
The Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory (SOHO) carries out a regular program of measuring the full-disk irradiance using the Normal Incidence Spectrograph (NIS). The full-disk solar spectrum is returned in the wavelength bands 308–379 Å and 513–633 Å, with a spectral resolution between 0.3 and 0.6 Å. A recent modification to the CDS on-board software allows simultaneous moderate resolution monochromatic images to be made of the stronger lines in these wavelength ranges. We report on observations made 23 April 1998, 21 May 1998, and 22 June 1998. A total of 69 monochromatic full-Sun images are extracted from the spectral line data. For the first time, spectrally resolved images of the full Sun in Heii 303.8 Å and Sixi 303.3 Å are presented and compared. Velocity maps of the Sun in singly ionized helium are presented. Correlations of intensity to velocity over a wide range of transition region and coronal temperatures are shown. Lines from Hei to Fexiv show statistical red shifts of 1–7 km s–1 between active regions and quiet Sun areas. Velocity maps of Mgix andx are presented, showing strong upflow and downflow regions associated with active regions, but not correlated with the brightest emission. Changes in line width are also presented in Hei, with discussion of similar features in other lines of comparable temperature. Corrections which need to be applied to CDS/NIS data to extract meaningful velocities and line widths are presented and discussed. The identifications of the lines in the CDS spectrum are examined. The spatial and spectral variation of the background component of the CDS spectrum is examined.  相似文献   

6.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

7.
Keenan  F.P.  Mathioudakis  M.  Pinfield  D.J.  Brown  W.A.  Bruner  M.E. 《Solar physics》1999,185(2):289-296
R-matrix calculations of electron impact excitation rates in Nixviii are used to derive theoretical electron-temperature-sensitive emission line ratios involving 3s–4p,3p–4d,3p –4s, and 3d–4f transitions in the 41–53 Å wavelength range. A comparison of these with solar flare observations from a rocket-borne X-ray spectrograph (XSST) reveals generally excellent agreement between theory and experiment (within the experimental and theoretical uncertainties), which provides support for the atomic data adopted in the analysis. However the 3s 2S–4p 2P1/2 line of Nixviii at 41.22 Å appears to be blended with the Fexix 13.74 Å feature observed by XSST in third order. In addition, the measured Nixviii intensity ratio I(3p 2P3/2– 4s 2S)/I(3p 2P1/2–4s 2S)=I(51.02 Å)/I(50.26 Å)=0.56, a factor of 3.8 smaller than the theoretical (temperature and density-insensitive) value of 2.1. The reason for this discrepancy is currently unexplained, but is unlikely to be due to blending of the 50.26 Å line, as the intensity of this feature is consistent with that expected from the other Nixviii lines in the XSST spectrum. Future observations of the Nixviii lines by the Advanced X-ray Astrophysics Facility (AXAF) should allow this problem to be resolved, and may also permit the use of the lines as electron-temperature diagnostics.  相似文献   

8.
Penn  M.J. 《Solar physics》2000,197(2):313-335
From 15:33 through 16:02 UT on 13 June 1998, observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SOHO/CDS instruments as part of the SOHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region between 12–14 June 1998, and that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy data covered 512 × 512 arc sec of the disk center and were spectrally centered at the Hei 1083 nm line and captured ±1.0 nm of surrounding solar spectrum. The Hei absorption line is seen blue-shifted to velocities of between 200 and 300 km s–1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s–1 along a path inclined roughly 49 deg to the solar surface and rises to a height of just over 1.5 solar radii before it becomes too diffuse to follow. The filament also shows internal motions with multiple Doppler components shifted by ±25 km s–1. Finally, the KPVT data show no Stokes V profiles in the Doppler-shifted Hei 1083.03 nm absorption to a limit of roughly 3×10–3 times the continuum intensity. The SOHO/CDS scanned the center of the KPVT FOV using seven EUV lines; Doppler-shifted filament emission is seen in lines from Hei 58.4 nm, Heii 30.4 nm, Oiv 55.5 nm, Ov 63.0 nm, Nevi 56.3 nm, and Mgx 61.0 nm representing temperatures from about 2×104K through 1×106K. Bound-free continuum absorption from Hi, without confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density H I =4.8±2.5×1017 cm–2. Spatial maps show that this filament absorption is more confined than the regions which show emission.  相似文献   

9.
Singh  Jagdev  Sakurai  Takashi  Ichimoto  Kiyoshi  Muneer  S. 《Solar physics》2003,212(2):343-359
Spectra around the 6374 Å [Fex] and 7892 Å [Fexi] emission lines were obtained simultaneously with the 25-cm coronagraph at Norikura Observatory covering an area of 200 ×500 of the solar corona. The line width, peak intensity and line-of-sight velocity for both the lines were computed using Gaussian fits to the observed line profiles at each location (4 ×4 ) of the observed coronal region. The line-width measurements show that in steady coronal structures the FWHM of the 6374 Å emission line increases with height above the limb with an average value of 1.02 mÅ arc sec–1. The FWHM of the 7892 Å line also increases with height but at a smaller average value of 0.55 mÅ arc sec–1. These observations agree well with our earlier results obtained from observations of the red, green, and infrared emission lines that variation of the FWHM of the coronal emission lines with height in steady coronal structures depends on plasma temperatures they represent. The FWHM gradient is negative for high-temperature emission lines, positive for relatively low-temperature lines and smaller for emission lines in the intermediate temperature range. Such a behaviour in the variation of the FWHM of coronal emission lines with height above the limb suggests that it may not always be possible to interpret an increase in the FWHM of emission line with height as an increase in the nonthermal velocity, and hence rules out the existence of waves in steady coronal structures.  相似文献   

10.
Keenan  F.P.  Pinfield  D.J.  Mathioudakis  M.  Aggarwal  K.M.  Thomas  R.J.  Brosius  J.W. 《Solar physics》2000,197(2):253-262
Theoretical electron density sensitive emission line ratios involving a total of eleven 2s 22p 2–2s2p 3 transitions in Sxi between 187 and 292 Å are presented. A comparison of these with solar active region observations obtained during rocket flights by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals generally good agreement between theory and experiment. However, the 186.87 Å line is masked by fairly strong Fexii emission at the same wavelength, while 239.83 Å is blended with an unknown feature, and 285.58 Å is blended with possibly Niv 285.56 Å. In addition, the 191.23 Å line appears to be more seriously blended with an Fexiii feature than previously believed. The presence of several new Sxi lines is confirmed in the SERTS spectra, at wavelengths of 188.66, 247.14 and 291.59 Å, in excellent agreement with laboratory measurements. In particular, the detection of the 2s 22p 2 3 P 1 –2s2p 3 3 P 0,1 transitions at 242.91 Å is the first time (to our knowledge) that this feature has been identified in the solar spectrum. The potential usefulness of the Sxi line ratios as electron density diagnostics for the solar transition region and corona is briefly discussed.  相似文献   

11.
Wavelength shifts converted to velocities between solar lines observed at disc center and laboratory wavelengths of Fei, Feii, Tii, Nii, and Fei lines in the near infrared are plotted as a function of the logarithm of their solar equivalent width in milliångstroms. The need for wavelengths based on the wavelength standards is stressed. A comparison of photographic Fei solar wavelength is shown to agree, on the average, with Fourier Transform Spectrometer solar wavelengths within less than 0.5 milliångstroms. Using Balthasar's limb effect tables we convert the disc center velocities to limb velocities and find, though the scatter is large, that there is little evidence for a super-gravitational red shift.  相似文献   

12.
In this letter, we bring attention to prominences which show different morphology in H and Heii 304 Å, as observed simultaneously by BBSO and EIT on board SOHO. Those two lines have been thought to represent similar chromospheric structures although they are formed at significantly different temperatures. We give two examples representing two kinds of anomaly: (1) prominences showing strong H emissions in the lower part and strong Heii emissions in the upper part, and (2) erupting prominences showing extensive Heii emission, but nothing in H. Our results indicate that a part or the whole of a prominence may be too hot to emit H radiation, possibly due to heating or thermal instability. Please note that these are not just two isolated cases, many other prominences show the similar differences in H and Heii 304 Å.  相似文献   

13.
Gouttebroze  P.  Vial  J.-C.  Bocchialini  K.  Lemaire  P.  Leibacher  J.W. 《Solar physics》1999,184(2):253-266
Variations of intensity and wavelength in several UV lines have been observed with the SUMER spectroheliometer onboard SOHO, and they have been analysed to obtain oscillation spectra and phase differences between lines of different ions. Lines intensities of neutral or singly ionized atoms (with temperature of formation 30000 K) exhibit an increase of oscillatory power between 2.5 and 7 mHz, which may be considered as the signature of p modes. Lines of highly ionized elements (with a temperature of formation 50000 K) yield power spectra which are continuously decreasing with frequency. Brightness variations of the continuum at different wavelengths between 1000 and 1400 Å present oscillations in the same frequency range. Thus, p modes seem to be efficiently stopped by the transition region. No clear evidence is found for the existence of a chromospheric oscillation mode. Phase comparisons between lines formed at different altitudes (in particular Sii and Siii) indicate that these lines oscillate in phase, within the precision of the measurements.  相似文献   

14.
The temporal and spatial variations of EUV emission from a small growing active region were investigated. Frequent localized short term ( few minutes) fluctuations in EUV emission were observed throughout the 7.2 hr interval when the most continuous observations were acquired. Approximately 20% of the 5 x 5 pixels had intensity variations exceeding a factor of 1.3 for the chromospheric L line, a factor of 1.5 for lines formed in the chromospheric-coronal transition region and a factor of 1.4 for the coronal Mg x line. A subflare in the region produced the largest intensity enhancements, ranging from a factor of 2.3 for the chromospheric L line to 8 for the transition region and coronal lines. The EUV fluctuations in this small active region are similar to those observed in coronal bright points, suggesting that impulsive heating is an important, perhaps dominant form of heating the upper chromospheric and lower coronal plasmas in small magnetic bipolar regions. The responsible mechanism most likely involves the rapid release of magnetic energy, possibly associated with the emergence of magnetic flux from lower levels into the chromosphere and corona.  相似文献   

15.
Since 1986, we have made some improvements to the multichannel solar spectrograph at Purple Mountain Observatory (PMO) step by step, and now we have developed and added to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe simultaneously solar activity at 9 wave bands including Caii H and K line, Mgi b line, Hei D3 line and H through H. The newly developed infrared imaging spectrograph can work in three wavelengths, i.e., Hei 10830 Å, Caii 8542 Å, and H. We replaced plates in the original system with CCDs and placed an image reducer before each CCD in order to match the CCD pixel size. The dispersions for Hei 10830 Å, Caii 8542 Å, and H of the new imaging solar spectrograph are 0.0693 Å, 0.0767 Å, and 0.0754 Å per CCD pixel respectively, and each vertical CCD pixel represents 0.34 arc sec of solar disk. We can obtain the line-center and off-band intensities of the three lines and the intensities of continua adjacent to these lines through the new instrument. We can also acquire velocity maps and line profiles. Therefore, it is specially suitable for two-dimensional (2D) spectroscopic observations of solar flares and active regions. We carry out scanning observation by rotating the second mirror of the coelostat system. In this paper, we introduce the improvements we made and the new imaging solar spectrograph. Some observation results are also presented in this article.  相似文献   

16.
Blanco  S.  Bocchialini  K.  Costa  A.  Domenech  G.  Rovira  M.  Vial  J.-C. 《Solar physics》1999,186(1-2):281-290
We have studied through a multiresolution wavelet analysis the oscillations in a limb prominence. Intensity fluctuations in time and height corresponding to different lines of Siiv and Oiv observed with SUMER on board SOHO have been analyzed in the wavelet bands of J3= 1 min 36 s to 3 min 12 s and J4=3 min 12 s to 6 min 24 s. For all species, oscillations in the J4 band were dominant. We found relevant differences between the behavior of line D1 (1393.76 Å) corresponding to Siiv and the set D2 (1401.16 Å), D3 (1404.81 Å), D4 (1402.77 Å) corresponding to Oiv, Oiv and Siiv respectively. We also report the identification of a pulse in the intensity of the line D1 that appears in the range of 15–20 min. This disturbance seems to travel with a speed of about 170 km s–1.  相似文献   

17.
The findings about this unusual eclipsing variable which possesses a white-dwarf component are reported. It was found that the H and K absorption lines of Caii are strongly pressure-broadened, and exhibit two double-reversal emission components. The radial velocities derived from the central strong emission components of Caii (H and K) are in agreement with the mean radial velocity curve obtained from the metallic absorption lines of the existing elements, whereas H (4340.47 Å) does not conform with the mean radial velocity curve. In certain orbital phases the H (6562.82 Å) line occurs in emission.  相似文献   

18.
As part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 3 November 1994, total solar eclipse from the International Astronomical Union site in Putre, Chile, through partly cloudy skies, and at the 26 February 1998 total solar eclipse from Nord, Aruba, through clear skies. We discuss the image reduction and analysis of two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of 160 s in Chile. One series of images was taken through a filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. We then discuss the modifications made for the 1998 eclipse, and the image reduction and analysis for those image sequences. After standard calibrations and image alignment of both data sets, we use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. At neither eclipse do we find evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity.  相似文献   

19.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

20.
Zhao  X.P.  Hoeksema  J.T.  Kosovichev  A.G.  Bush  R.  Scherrer  P.H. 《Solar physics》2000,193(1-2):219-225
A novel emission feature resembling moss was first identified in high-resolution TRACE Feix/x 171 Å images by Berger et al. (1999). The moss emission is characterized by dynamic arc-second scale, bright elements surrounding dark inclusions in images of solar active regions. Patches of moss elements, called moss regions, have a scale of 20–30 Mm. Moss regions occur only above some of magnetic plages that underlie soft X-ray coronal loops. Using the potential field extrapolation of the photospheric magnetic field into the corona, we find that the magnetic field lines in moss-associated magnetic plages connect with adjacent plages with opposite polarity; however, all field lines from mossless plages end in surrounding quiet regions. This result is consistent with the idea that the TRACE moss is the emission from the upper transition region due to heating of low-lying plasma by field-aligned thermal conduction from overlying hot plasma (Berger et al., 1999).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号