首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

2.
A generalized diagram was constructed for the compositions of multicomponent heterogeneous parental media for diamonds of kimberlite deposits on the basis of the mantle carbonatite concept of diamond genesis. The boundary compositions on the diagram of the parental medium are defined by the components of minerals of the peridotite and eclogite parageneses, mantle carbonatites, carbon, and the components of volatile compounds of the C-O-H system and accessory phases, both soluble (chlorides, phosphates, and others) and insoluble (sulfides and others) in carbonate-silicate melts. This corresponds to the compositions of minerals, melts, and volatile components from primary inclusions in natural diamonds, as well as experimental estimations of their phase relations. Growth media for most natural diamonds are dominated by completely miscible carbonate-silicate melts with dissolved elemental carbon. The boundary compositions for diamond formation (concentration barriers of diamond nucleation) in the cases of peridotite-carbonate and eclogite-carbonate melts correspond to 30 wt % peridotite and 35 wt % eclogite; i.e., they lie in the carbonatite concentration range. Phase relations were experimentally investigated at 7 GPa for the melting of the multicomponent heterogeneous system eclogite-carbonatite-sulfide-diamond with a composition close to the parental medium under the conditions of the eclogite paragenesis. As a result, “the diagram of syngenesis” was constructed for diamond, as well as paragenetic and xenogenic mineral phases. Curves of diamond solubility in completely miscible carbonate-silicate and sulfide melts and their relationships with the boundaries of the fields of carbonate-silicate and sulfide phases were determined. This allowed us to establish the physicochemical mechanism of natural diamond formation and the P-T conditions of formation of paragenetic silicate and carbonate minerals and coexistence of xenogenic sulfide minerals and melts. Physicochemical conditions of the capture of paragenetic and xenogenic phases by growing diamonds were revealed. Based on the mantle carbonatite concept of diamond genesis and experimental data, a genetic classification of primary inclusions in natural diamond was proposed. The phase diagrams of syngenesis of diamond, paragenetic, and xenogenic phases provide a basis for the analysis of the physicochemical history of diamond formation in carbonatite magma chambers and allow us to approach the formation of such chambers in the mantle material of the Earth.  相似文献   

3.
A diagram of the syngenesis of diamond, silicate, carbonate, and sulfide minerals and melts is compiled based on experimental data on phase relations in the heterogeneous eclogite-carbonate-sulfidediamond system at P = 7 GPa. Evidence is provided that silicate and carbonate minerals are paragenetic, whereas sulfides are xenogenic with respect to diamond. Diamond and paragenetic phases are formed in completely miscible carbonate-silicate growth melts with dissolved elemental carbon. Coherent data of physicochemical experiment and mineralogy of primary inclusions in natural diamonds allows us to prove the mantle-carbonatite theory of diamond origin. The genetic classification of primary inclusions in natural diamonds is based on this theory. The phase diagrams of syngenesis are applicable to interpretation of diamond and syngenetic minerals formation in natural magma sources. They ascertain physicochemical mechanism of natural diamond formation and conditions of entrapment of paragenetic and xenogenic mineral phases by growing diamonds.  相似文献   

4.
Based on experimental and mineralogical data, the model of mantle carbonate-silicate (carbonatite) melts as dominating parental media for natural diamonds was substantiated. It was demonstrated that the compositions of silicate constituents of parental melts were variable and saturated with respect to mantle rocks, namely pyrope peridotite, garnet pyroxenite, and eclogite. Based on concentration contributions and role in diamond genesis, major (carbonate and silicate) and minor (admixture) components were distinguished. The latter components may be both soluble (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble (sulfides, metals, and carbides) in silicate-carbonate melts. This paper presents the results of a study of diamond crystallization in multicomponent melts of variable composition with carbonate components (K2CO3, CaCO3 · MgCO3, and K-Na-Ca-Mg-Fe carbonatite) and silicate components represented by model peridotite (60 wt % olivine, 16 wt % orthopyroxene, 12 wt % clinopyroxene, and 12 wt % garnet) and eclogite (50 wt % garnet and 50 wt % clinopyroxene). Carbonate-silicate melts behave like completely miscible liquid phases in experiments performed under the P-T conditions of diamond stability. The concentration barriers of diamond nucleation (CBDN) in melts with variable proportions of silicates and carbonates were determined at 8.5 GPa. In the peridotite system with K2CO3, CaCO3 · MgCO3, and carbonatite, they correspond to 30, 25, and 30 wt % silicates, respectively, and in the eclogite system, the CBDN is shifted to 45, 30, and 35 wt % silicates. In the silicate-carbonate melts with higher silicate contents, diamond grows on seeds, which is accompanied by the crystallization of thermodynamically unstable graphite. At P = 7.0 GPa and T = 1200−1800°C, we studied and constructed phase diagrams for the multicomponent peridotite-carbonate and eclogite-carbonate systems as a physicochemical basis for revealing the syngenetic relationships between diamond and its silicate (olivine, ortho- and clinopyroxene, and garnet) and carbonate (aragonite and magnesite) inclusions depending on the physicochemical conditions of growth media. The results obtained allowed us to reconstruct the evolution of diamond-forming systems. The experiments revealed similarity between the compositions of synthetic silicate minerals and inclusions in natural diamonds (high concentrations of Na in garnets and K in clinopyroxenes). It was experimentally demonstrated that the formation of Na-bearing majoritic garnets is controlled by the P-T parameters and melt alkalinity. Diamonds with inclusions of such garnets can be formed in alkalic carbonate-silicate (aluminosilicate) melts. A mechanism was suggested for sodic end-member dissolution in majoritic garnets, and garnet with the composition Na2MgSi5O12 and tetragonal symmetry was synthesized for the first time.  相似文献   

5.
Experimental studies of diamond formation in the alkaline silicate-carbon system Na2O–K2O–MgO–CaO–Al2O3–SiO2–C were carried out at 8.5 GPa. In accordance with the diamond nucleation criterion, a high diamond generation efficiency (spontaneous mass diamond crystallization) has been confirmed for the melts of the system Na2SiO3–carbon and has been first established for the melts of the systems CaSiO3–carbon and (NaAlSi3O8)80(Na2SiO3)20–carbon. It is shown that in completely miscible carbonate-silicate melts oversaturated with dissolved diamond-related carbon, a concentration barrier of diamond nucleation (CBDN) arises at a particular ratio of carbonate and silicate components. Study of different systems (eclogite–K-Na-Mg-Ca-Fe-carbonatite–carbon, albite–K2CO3–carbon, etc.) has revealed a dependence of the barrier position on the chemical composition of the system and the inhibiting effect of silicate components on the nucleation density and rate of diamond crystal growth. In multicomponent eclogite-carbonatite solvent, the CBDN is within the range of carbonatite compositions (<50 wt.% silicates). Based on the experimental criterion for the syngenesis of diamond and growth inclusions in them, we studied the syngenesis diagram for the system melanocratic carbonatite–diamond and determined a set of the composition fields and physical parameters of the system that are responsible for the cogeneration of diamond and various mineral and melt parageneses. The experimental results were applied to substantiate a new physicochemical concept of carbonate-silicate (carbonatite) growth media for most of natural diamonds and to elaborate a genetic classification of growth mineral, melt, and fluid inclusions in natural diamonds of mantle genesis.  相似文献   

6.
Diamond crystallization from carbon solutions in compositionally variable melts of model eclogite with dolomite [CaMg(CO3)2], potassium carbonate (K2CO3), and multicomponent K-Na-Ca-Mg-Fe carbonates was studied at 7.0–8.5 GPa. Concentration barriers for the nucleation of the diamond were determined at a standard pressure of 8.5 GPa for variable proportions of silicate and carbonate components in the growth solutions. They correspond to 35, 65, and 40 wt % of silicate components for systems with dolomite, K2CO3, and carbonatites, respectively. At higher contents of silicates in silicate-carbonate melts, the nucleation of diamond phase ceases, but diamond crystallization on seed crystals continues and is accompanied by the spontaneous crystallization of thermodynamically unstable graphite. In melts of the albite (NaAlSi3O8)-K2CO3-C compositions, the concentration barrier of diamond nucleation at 8.5 GPa is up to 90–92 wt % of the albite component, and diamond growth on seeds was observed in albite-carbon melts. Using mineralogical and experimental data, we developed a model of mantle carbonate-silicate (carbonatite) melts as the main parental media for natural diamonds; it was shown that the composition of the silicate constituent of such parental melts is variable and corresponds to the mantle ultrabasic-basic series. With respect to concentration contributions and dominant role in the genesis of diamond in the Earth’s mantle, major (carbonate and silicate) and minor or admixture components were distinguished. The latter include both soluble in carbonate-silicate melts (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble components (sulfides, metals, and carbides). Both major and minor components may affect the position of the concentration barriers of diamond nucleation in natural parent media.  相似文献   

7.
High-pressure Partial Melting of Mafic Lithologies in the Mantle   总被引:17,自引:2,他引:15  
We review experimental phase equilibria associated with partialmelting of mafic lithologies (pyroxenites) at high pressuresto reveal systematic relationships between bulk compositionsof pyroxenite and their melting relations. An important aspectof pyroxenite phase equilibria is the existence of the garnet–pyroxenethermal divide, defined by the enstatite–Ca-Tschermakspyroxene–diopside plane in CaO–MgO–Al2O3–SiO2projections. This divide appears at pressures above 2 GPa inthe natural system where garnet and pyroxenes are the principalresidual phases in pyroxenites. Bulk compositions that resideon either side of the divide have distinct phase assemblagesfrom subsolidus to liquidus and produce distinct types of partialmelt ranging from strongly nepheline-normative to quartz-normativecompositions. Solidus and liquidus locations are little affectedby the location of natural pyroxenite compositions relativeto the thermal divide and are instead controlled chiefly bybulk alkali contents and Mg-numbers. Changes in phase volumesof residual minerals also influence partial melt compositions.If olivine is absent during partial melting, expansion of thephase volume of garnet relative to clinopyroxene with increasingpressure produces liquids with high Ca/Al and low MgO comparedwith garnet peridotite-derived partial melts. KEY WORDS: experimental petrology; mantle heterogeneity; partial melting; phase equilibrium; pyroxenite  相似文献   

8.
We present data on the phase relationships of mixtures between natural tonalite and peridotite compositions with excess H2O at 30 kbar, and on the composition of the piercing point where the peridotite-tonalite mixing line intersects the L(Ga,Opx) reaction boundary. These data, in conjunction with earlier analogous data along peridotite-granite and basalt-granite mixing lines, permit construction of a pseudoternary liquidus projection that is relevant to interaction of peridotite with slab-derived magmas. Knowledge of the liquidus phase and temperature for a range of compositions within this projection enables us to map primary crystallization fields for quartz, garnet, orthopyroxene, clinopyroxene, and olivine, and to estimate the distribution of isotherms across the projection. Using this projection, we explore the consequences of peridotite assimilation by mafic to intermediate (basalt to dacite) hydrous slab-derived melts. Progressive assimilation under isothermal conditions results in garnet precipitation as the melt composition traverses the garnet liquidus surface and then garnet+orthopyroxene crystallization once the melt reaches the L(Ga,Opx) field boundary. The melt is constrained to remain on this field boundary and further assimilation of peridotite simply results in continued precipitation of garnet+orthopyroxene until the melt is consumed. The product is a hybrid solid assemblage consisting of Ga+ Opx. It is noteworthy that this process drives the melt composition in a direction nearly perpendicular to the mixing line between peridotite and the initial melt. If assimilation occurs with increasing temperature (as might occur if a slab-derived magma rises into the hotter mantle wedge), intermediate magmas (e.g. andesites) will again precipitate garnet until they reach the L(Ga,Opx) reaction boundary at which point Ga re-dissolves and orthopyroxene precipitates as the melt composition moves up-temperature along this boundary. The product of this process is a hybrid solid assemblage with garnet subordinate to orthopyroxene. For more mafic initial compositions (e.g. basalts) originally plotting in the Cpx field, it appears possible to avoid field boundaries involving garnet and shift in composition more directly toward peridotite, if assimilation is accompanied by a sharp increase in temperature. Considering published REE evidence (arguing against garnet playing a significant role in the genesis of many subduction-related magmas) in light of our results, it appears unlikely that peridotite assimilation by intermediate magmas under conditions of constant or increasing temperature is an important process in subduction zones. However, if assimilation is accompanied by an increase in temperature, our data do permit the derivation of high-Mg basalts from less refractory precursors (e.g. high-Al basalts) by peridotite assimilation.  相似文献   

9.
Melting relations in the multicomponent diamond-forming systems of the upper mantle with a boundary of K–Na–Mg–Fe–Ca carbonate, phases of the model peridotite and eclogite, carbon, and titanium minerals from kimberlite (ilmenite FeTiO3, perovskite CaTiO3, and rutile TiO2) were studied experimentally at 7–8 GPa and 1600–1650°C. Perovskite reacts with the formation of rutile in the diamond-forming silicate–carbonate melts. We discovered liquid immiscibility between melts of titanium minerals, on the one hand, and carbonate–carbon, peridotite–carbonate–carbon, and eclogite–carbonate–carbon diamond-forming melts, on the other. The solubility of titanium mineral in diamond-forming melts is negligible independent of their concentration in the experimental systems. Growth melts retain high diamond-forming efficiency. In general, the experimental results are evident for the xenogenic nature of titanium minerals in inclusions in diamond and, therefore, in diamond-forming melts. It is shown that the physicochemical factors that may correlate the diamond content with the concentration of Ti in kimberlite do not occur during the diamond genesis in silicate–carbonate–carbon parental melts containing titanium minerals and their melts.  相似文献   

10.

To characterize the influence of alkaline metal chlorides on the phase ratios under melting of upper mantle eclogites, the eclogite–CaCO3–NaCl–KCl system with Н2О + СО2-fluid was studied in the experiments under 4 GPa and 1200–1300°C. A low difference in temperatures (<100°C) was registered between the eclogite solidus and liquidus (>1200 and <1300°C, respectively), which is characteristic for the near-eutectic compositions. The phase proportions were peculiar for the absence of any silicate melt over the entire temperature range considered. The carbonate melt coexisted with clinopyroxene and garnet within 1200–1250°C, whereas a carbonate melt exclusively occurred under above-liquidus conditions at 1300°C. The melt quenching resulted in the formation of a multiphase fine-grained mixture of Ca, Na, and K carbonates and chlorides containing microinclusions of clinopyroxene and garnet. The occurrence of a high-calcium carbonate melt in Cl-containing eclogite systems might play a significant role in the mantle metasomatism of subduction zones characterized by the water–alkaline–chloride type of fluids.

  相似文献   

11.
Crystalline and melt inclusions were studied in garnet,diopside,potassium feldspar,and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk,southern Mongolia.Phlogopite,clinopyroxene,albite,potassium feldspar,spheric,wollastonite,magnetite,Ca and Sr sulfates,fluorite,and apatite were identified among the crystalline inclusions. The melt inclusions were homogenized at 1010~1080℃and analyzed on an electron microprobe.Silicate,salt,and combined silicate- salt melt inclusions were found.Silicate melts show considerable variations in SiO_2 concentration(56 to 66wt% ),high Na_2O K_2O (up to 17wt% ),and elevated Zr,F,and C1 contents.In terms of bulk rock chemistry,the silicate melts are alkali syenites.During thermometric experiments,salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO_2.These melts are enriched in alkalis,Ba,Sr,P,F,and C1.The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt(sulfate)liquids.  相似文献   

12.
Anhydrous P-T phase relations, including phase compositions and modes, are reported from 10–31 kbar for a near-primary high-alumina basalt from the South Sandwich Islands in the Scotia Arc. The water content of natural subduction-related basalt is probably <0.5 wt.% and thus, these results are relevant to the generation of primary basaltic magmas in subduction zones. At high pressures (>27 kbar) garnet is the liquidus phase followed by clinopyroxene, then quartz/coesite at lower temperatures. At intermediate pressures (17–27 kbar), clinopyroxene is the liquidus phase followed by either garnet, quartz, plagioclase, then orthopyroxene or plagioclase, quartz, garnet, then orthopyroxene depending on the pressure within this interval. At all lower pressures, plagioclase is the liquidus phase followed at much lower temperatures (100° C at 5 kbar) by clinopyroxene. The absence of olivine from the liquidus suggests that the composition studied here could not have been derived from a more mafic parent by olivine fractionation at any pressure investigated, and supports the interpretation that it is primary. If so, these results also preclude an origin for this melt by partial melting of olivine-rich mantle periddotite and suggest instead that it was generated by partial melting of the descending slab (quartz eclogite) leaving clinopyroxene, garnet, or both in the residue. The generally flat REE patterns for low-K series subduction related basalts argue against any significant role for garnet, however, and it is thus concluded that the composition studied here was extracted at 20–27 kbar after sufficiently high degrees of partial melting (50%) to totally consume garnet in the eclogite source. Melting experiments on three MORB composition, although not conclusive, are in agreement with this mechanism. Results at 30 kbar support an origin for tonalite/trondhjemite series rocks by lower degrees of melting (15–30%), leaving both garnet and clinopyroxene in the residue.  相似文献   

13.
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.  相似文献   

14.
An olivine basalt, a tonalite (andesite), a granite (rhyolite), and a red clay (pelagic sediment) were reacted, with known quantities of water in sealed noble metal capsules, in a piston-cylinder apparatus at 30 kb pressure. For the pelagic sediment, with H2O+=7.8% and no additional water, the liquidus temperature is 1240°C, the primary phases are garnet and kyanite. The subsolidus phase assemblage is phengite mica+garnet+clinopyroxene+coesite+kyanite. With 5 wt.% water added, the liquidus temperatures and primary phases for the calc-alkaline rocks are 1280°-1180°-1080°, garnet+clinopyroxene, garnet, and quartz respectively. Garnet and clinopyroxene occur throughout the melting interval of the olivine tholeiite for all water contents. Garnet is joined by clinopyroxene 80° below the andesite plus 5% H2O liquidus, quartz is joined by clinopyroxene 180° below the rhyolite plus 5% H2O liquidus. The subsolidus phase assemblage is garnet+clinopyroxene+coesite+minor kyanite for all the calc-alkaline compositions. We conclude that calc-alkaline andesites and rhyolites are not equilibrium partial melting pruducts of subducted oceanic crust consisting of olivine tholeiite basalt and siliceous sediments. Partial melting in subduction zones produces broadly acid and intermediate liquids, but these liquids lie off the calc-alkaline basalt-andesite-rhyolite join and must undergo modification at lower pressures to produce calcalkaline magmas erupted in overlying island arcs.  相似文献   

15.
Olivine, orthopyroxene and garnet grains belonging to the peridotitic suite of mineral inclusions in natural diamonds typically show compositions poorer in Ca and Al and richer in Mg and Cr than the same minerals in peridotite nodules in kimberlite. Other features suggest the crystallisation of diamonds from magmas of kimberlitic affinities, and it is suggested that the genesis of peridotitic suite diamonds is linked with that of a CO2-bearing magma. It is shown that the generation of kimberlitic magma from common garnet-peridotite (with 5 wt.% clinopyroxene) in the presence of CO2 may rapidly remove by melting all Ca-rich solid phases (clinopyroxene and/or carbonate). Further melting may form liquids in equilibrium with olivine, orthopyroxene, and garnet with the distinctive compositions of the diamond inclusions. The amount of melting and CO2 necessary for the loss of clinopyroxene (and/or carbonate) are estimated at approximately 5.0 wt.% and 0.5 wt.% respectively.  相似文献   

16.
Reidar G. Trnnes 《Lithos》2000,53(3-4):233-245
Melting experiments were performed on an FeO-rich bulk Earth model composition in the CMFAS system in order to investigate the partitioning of major elements between coexisting minerals and melts. The starting material (34.2% SiO2, 3.86% Al2O3, 35.2% FeO, 25.0% MgO and 1.88% CaO), contained in Re-capsules, was a mixture of crystalline forsterite and fayalite, and a glass containing SiO2, Al2O3, and CaO. Olivine is the first liquidus phase at 10 GPa but is replaced by majoritic garnet (ga) in the 15–26 GPa range. Magnesiowüstite (mw) crystallizes close to the liquidus and is joined by perovskite (pv) at 26 GPa.

The quenched melt compositions are homogeneous throughout the melt region of the charges and are only slightly enriched in Si, Ca and Fe, and depleted in Mg, relative to the starting composition. The Fe/Mg and Ca/Al ratios in all of the minerals increase rapidly below the liquidus to become compatible with the bulk composition at the solidus. At 26 GPa, a relative density sequence of mw>pv>melt>ga is observed. This indicates that majorite floating, combined with the sinking of magnesiowüstite and perovskite can be expected during the solidification of a Hadean magma ocean and in hot mantle plumes early in the Earth's history. The mineral–melt partitioning relations indicate that fractional crystallization or partial melting in the transition zone and the upper part of the lower mantle would increase the Fe/Mg and Ca/Al ratios of the melt, even if magnesiowüstite was predominant in the solid fraction. A significant contribution of accumulated mw to the segregation of the protocore is therefore unlikely. The suggested process of perovskite fractionation to the lower mantle is not capable of increasing the Mg/Si ratio in the residual melt, and the combined fractionation of perovskite and magnesiowüstite produces a melt with elevated ratios of Si/Mg, Ca/Al and Fe/Mg.  相似文献   


17.
Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.  相似文献   

18.
This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate–carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate–silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.  相似文献   

19.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

20.
A xenolith of bimineralic eclogite from the Udachnaya kimberlite pipe provides a snapshot of interaction between mantle rocks and diamond-forming fluids/melts. The major-element composition of the eclogite is similar to that of N-MORB and/or oceanic gabbros, but its trace-element pattern shows the effects of mantle metasomatism, which resulted in diamond formation. The diamonds are clustered in alteration veins that crosscut primary garnet and clinopyroxene. The diamonds contain microinclusions of a fluid/melt dominated by carbonate and KCl. Compared to the worldwide dataset, the microinclusions in these diamonds fall in middle of the range between saline fluids and low-Mg carbonatitic melts. The fluid/melt acted as a metasomatic agent that percolated through ancient eclogitic rocks stored in the mantle. This interaction is consistent with calculated partition coefficients between the rock-forming minerals and diamond-forming fluid/melt, which are similar to experimentally-determined values. Some differences between the calculated and experimental values may be due to the low contents of water and silicates in the chloride-carbonate melt observed in this study, and in particular its high contents of K and LILE. The lack of nitrogen aggregation in the diamonds implies that the diamond-forming metasomatism took place shortly before the eruption of the kimberlite, and that the microinclusions thus represent saline carbonate-rich fluids circulating in the basement of lithospheric mantle (150–170 km depth).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号