首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
田培  贾婷惠  平耀东  许盈  王哲  刘目兴 《热带地理》2023,(11):2216-2228
揭示鄂西北土壤侵蚀时空分异特征及成因可为该区域的水土保持工作提供借鉴。基于RUSLE模型定量分析2005—2020年鄂西北土壤侵蚀时空分异特征,利用地理探测器进行土壤侵蚀时空格局的主导因素和多因子间度量交互耦合程度的定量归因研究。结果表明:1)鄂西北2005—2020年土壤侵蚀强度整体持续下降,15年间平均土壤侵蚀模数下降了16.3 t/(km2·a);整体以微度和轻度侵蚀为主(占总侵蚀面积的93%)。2)不同坡度下土壤侵蚀强度不同,8°~25°地区以中度、强烈和极强烈侵蚀为主(侵蚀占比为55.4%);>25°地区,65.6%的面积受到强烈及以上等级的高强度侵蚀。3)坡度和主要土地利用类型是土壤侵蚀的主导因子,二者共同作用对土壤侵蚀的解释力(q=0.479)均优于单因子。4)坡度>35°、高程在500~800 m、年降雨侵蚀力在4 950.55~6 378.09 MJ·mm/(hm2·h·a)且以耕地为主要土地利用类型的区域均被识别为高风险侵蚀区。  相似文献   

2.
为科学地认识中国东北黑土区流域土壤侵蚀特征,探讨TETIS模型在该区的适用性,本文以乌裕尔河流域为例,利用1971-1987年日径流与泥沙实测数据对TETIS模型进行了校正与验证,进而分析了流域土壤侵蚀强度特征及其与坡度、土地利用方式的关系。研究结果表明:TETIS模型在乌裕尔河流域适用性好,日径流与日输沙量的纳什效率系数在0.52~0.70之间,决定系数在0.60~0.71之间,体积误差均不超过15%。流域平均侵蚀模数为397.2 t/(km2·a),流域以微度和轻度侵蚀为主,约90%的产沙来自于坡面。平均土壤侵蚀模数随坡度的增大而增大,流域侵蚀量主要来自于0°~5°坡面。不同土地利用方式具不同的土壤侵蚀模数,耕地土壤侵蚀模数最大,达556.3 t/(km2·a)。坡度较大的耕地和植被覆盖度较低的区域是水土流失治理的重点。研究表明,TETIS模型在黑土区模拟土壤侵蚀产沙应用前景好,可为研究区制定水土保持措施提供科学依据。  相似文献   

3.
裴亮  刘阳  陈晨 《地理科学》2017,37(9):1403-1410
基于Landsat遥感影像提取大凌河流域1986~2014年7期土地利用/覆被变化信息,并结合1986~2014年流域气候变化情况,发现大凌河流域土地利用变化对流域气候变化具有负面影响。研究表明: 近30 a大凌河流域土地利用/覆被变化情况表现为:建设用地和农林用地的大幅度扩张,面积分别增加了322.30 km2和1 504.94 km2,并伴随着水域和旱地及其他未利用地面积的显著减少,面积分别减少了102.42 km2和1 724.61 km2; 大凌河流域近30 a来土地利用变化导致流域平均年降水量、平均相对湿度及平均风速小幅度下降,分别减少了14.94 mm、0.2%和0.04 m/s,平均气温缓慢上升,增长了0.1℃; 退耕还林还草及成立凌河保护区等工作能提高流域植被覆盖面积、使流域水域面积得以回升,从而可以缓解城市热岛效应带来的温度升高,提高流域生态环境质量。  相似文献   

4.
地形是土壤侵蚀进程的重要控制因子,在土壤侵蚀评价中发挥着重要作用。基于地形起伏表达构建了地形指数,结合降雨侵蚀力和植被盖度等建立了基于地形指数的土壤侵蚀方程,并分析了内蒙古自治区鄂尔多斯市北部十大孔兑砒砂岩黄土区1985—2018年土壤侵蚀时空变化特征。结果表明:(1)研究区多年土壤侵蚀模数整体有下降趋势但变化差异不显著(P>0.05),多年平均侵蚀模数为22.34 t·hm-2·a-1。1985年土壤侵蚀模数最大,2000年土壤侵蚀模数最小,1985—2000年呈下降趋势,2000—2018年呈上升趋势;(2)多年平均土壤侵蚀面积为2 956.07 km2,1985年土壤侵蚀面积最大,为4 047.14 km2,占总面积比例83%;2000年土壤侵蚀面积最小,为2 153.67 km2,占比44%。研究区1985—2000年以轻度、中度侵蚀强度类型为主,2000—2018年以微度、轻度侵蚀类型为主;(3)多年土壤侵蚀空间分布格局基本一致,土壤侵蚀综合指数由西至东增加,总体上呈现为东部侵蚀大于西部的特点,母哈尔沟土壤侵蚀综合指数最大,毛卜拉孔兑最小;(4)地形指数土壤侵蚀方程与通用土壤流失方程在土壤侵蚀模数和土壤侵蚀面积估算上均无显著差异(P>0.05)。  相似文献   

5.
南北盘江森林生态系统水源涵养功能评价   总被引:15,自引:1,他引:14  
刘璐璐  曹巍  邵全琴 《地理科学》2016,36(4):603-611
森林生态系统水源涵养功能是植被层、枯枝落叶层和土壤层对降雨进行再分配的复杂过程。运用综合蓄水能力法,基于森林资源二类调查数据,估算了贵州省南北盘江流域不同类型森林生态系统的林冠层截留降水量、枯落物持水量和土壤蓄水量,分析了流域尺度森林生态系统的水源涵养能力及其时空变化。结果表明:南北盘江流域森林涵养水源总量约6.13×108m3,单位面积水源涵养量629.85 t/hm2,森林水源涵养能力空间分布呈现东高西低的趋势;不同类型森林来说,阔叶林和灌木林对区域水源涵养总量的贡献率最大,而混交林的单位面积水源涵养量最高;不同林龄比较,幼龄林对区域水源涵养贡献率最高,达45.95%,但其单位面积水源涵养能力最差,过熟林的单位面积水源涵养能力最高;就坡位而言,平地和中坡森林对区域水源涵养总量的贡献率最大,山谷森林单位面积水源涵养能力最高,山脊森林单位面积涵养水源能力最低;近35 a来,随着生态工程的实施,森林生态系统水源涵养总能力以1 447.89×104m3/a速度持续提升,单位面积水源涵养量以每年5.33 t/hm2的速度稳步提高。  相似文献   

6.
1992-2013年巢湖流域土壤侵蚀动态变化   总被引:8,自引:1,他引:7  
查良松  邓国徽  谷家川 《地理学报》2015,70(11):1708-1719
基于GIS和RS技术,利用修正的通用土壤流失方程(RUSLE)模型,结合遥感影像、DEM数据、土壤类型数据及相关统计确定了模型中参数因子,计算出巢湖流域1992-2013年土壤侵蚀模数,分析了土壤侵蚀强度的时空动态变化特征。结果表明:巢湖流域土壤侵蚀区域主要呈东北至西南方向分布。微度、轻度、中度、强度、极强和剧烈侵蚀占土壤侵蚀总面积百分比分别是93.46%、6.25%、0.68%、0.19%、0.01%、0.01%。1992-2006年土壤侵蚀模数由510.70 t/(km2·a)减少到129.79 t/(km2·a),降幅为74.59%,同时植被覆盖率由37.0%增至47.80%,土壤侵蚀的面积比例变化明显,轻度、中度、强度、极强和剧烈侵蚀由8.93%、2.33%、1.32%、0.09%、0.05%分别减少为4.74%、1.39%、0.28%、0.02%、0.01%,微度侵蚀由87.88%增加到94.16%。但2013年土壤微度侵蚀又减少为93.46%,土壤微度侵蚀有向高一级转换趋势。2006-2013年土壤侵蚀模数也由129.79 t/(km2·a)增加到149.44 t/(km2·a),增幅为15.14%。  相似文献   

7.
山地生态系统的土壤侵蚀和水源供给变化对评估区域生态环境质量有重要意义。基于2000-2015年四期土地利用数据,借助InVEST模型对淇河流域近16年间山地生态系统的土壤侵蚀和水源供给变化进行评估。结果表明:① 研究区主要土地利用类型为耕地、草地和林地,共占流域总面积的90%以上。近16年间淇河流域的耕地面积显著减少,草地和水域面积大幅增加,建设用地扩张明显。② 平均土壤侵蚀模数显著降低,2000年土壤侵蚀模数为154.27 t/(hm2·a),2015年减少到32.09 t/(hm2·a);强度侵蚀、极强侵蚀和剧烈侵蚀由9.03%、12.19%和25.96%分别减少到7.17%、6.36%和4.21%,微度侵蚀、轻度侵蚀和中度侵蚀由24.31%、16.96%和11.57%增加到41.89%、27.71%和12.68%;退耕还林、还草措施优化了土地利用格局,促进植被恢复,对治理土壤侵蚀起到了显著效果。③ 水源供给量整体呈现先增加后减少的趋势,2005年达到峰值(1.79亿m3)。相邻两期水源供给量增减变化不一,2000-2005年水源供给量增加的面积大于减少的面积,其水源供给的量值也呈增加趋势,水源供给能力整体增强;而2005-2010年、2010-2015年的水源供给能力随之减弱,其中,2010-2015年水源供给减少的较小;林地和草地面积的增加造成水源供给量降低,土壤水源涵养能力增强。土壤侵蚀和水源供给是山地生态脆弱性响应的重要指标,制定合理的水土保持措施对增强山区生态系统的服务能力具有重要意义。  相似文献   

8.
梯田建设和淤地坝淤积对土壤侵蚀影响的定量分析   总被引:8,自引:0,他引:8  
为了研究梯田建设和淤地坝淤积对流域土壤侵蚀的影响,本文首先建立了包含梯田、坡耕地、陡坡草地以及坝地在内的黄土高原丘陵沟壑区流域简化模型,并定义了流域的先锋期、过渡期以及顶级期三个状态,使用修正通用土壤流失方程(RUSLE) 分析了不同时期的流域土壤侵蚀模数。结果显示:先锋期与顶级期是流域水土保持治理的极限状态,先锋期峁边线上部土壤侵蚀模数为299.56 t×hm-2×a-1,下部土壤侵蚀模数为136.64 t×hm-2×a-1,平均侵蚀模数为229.74 t×hm-2×a-1;顶级期峁边线上部土壤侵蚀模数为39.10 t×hm-2×a-1,下部土壤侵蚀模数为1.10 t×hm-2×a-1,平均侵蚀模数为22.81 t×hm-2×a-1;在过渡期,随着梯田面积比例的增加,峁边线上部土壤侵蚀模数呈指数减少,而随着淤积高度的增加,峁边线下部土壤侵蚀模数呈线性减少,文章最后对这一结论进行了实证分析。  相似文献   

9.
岩溶区土地石漠化已成为中国西部继沙漠化和水土流失后的第三大生态问题,近年来岩溶槽谷区石漠化表现出增加趋势。通过获取槽谷区石漠化、岩性、坡度、海拔、降雨量、土地利用、人口密度和第一产业生产总值等数据,利用GIS空间分析功能和地理探测器模型,探讨了岩溶槽谷区石漠化空间分布特征及驱动因子。主要结论为:① 岩溶槽谷区总石漠化面积为21323.7 km 2,占研究区土地面积的8.3%,其中轻度、中度和重度石漠化面积分别是11894.8 km 2、8615.8 km 2和813.1 km 2,分别占石漠化面积的55.8%、40.4%和3.8%;② 从石漠化的空间分布来看,槽谷区石漠化主要发生在连续性灰岩中,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的22.1%、22.4%和1.9%;槽谷区石漠化主要发生在15°~25°的坡度范围,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的27.1%、18.2%和2.3%;从海拔来看,主要分布于400~800 m范围内,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的24.9%、18.4%和0.2%;从土地利用类型来看,主要发生于山地旱地中;从人口密度来看,集中分布于100~200人/km 2中;从第一产业生产总值来看,集中分布于25亿~50亿元中;③ 地理探测器的因子探测器揭示了岩性(q = 0.58)、土地利用(q = 0.48)和坡度(q = 0.42)3个因子是槽谷区石漠化形成的主要驱动因子,交互式探测器进一步揭示了岩性与土地利用类型(q = 0.85)、坡度与土地利用类型的组合(q = 0.75)共同驱动槽谷区石漠化的形成。  相似文献   

10.
基于遥感和GIS的中国20世纪90年代毁林开荒状况分析   总被引:10,自引:0,他引:10  
毁林开荒过程是一种林地变为耕地的土地利用变化过程,可以通过遥感和GIS技术对这一过程进行监测。本文通过覆盖全国的TM影像数据,对20世纪90年代林地转为耕地的面积及其空间分布进行分析,从而对全国毁林开荒过程进行遥感监测。结果表明,该时期有17630km2的林地被开垦为耕地。不同面积等级的开垦过程在不同流域分布也不同:面积小于10hm2和介于10~100hm2的被开垦林地较广泛地分布于各大流域;而面积介于100~1000hm2的被开垦林地主要分布于松辽流域、黑龙江流域和东北东部流域、长江流域、珠江流域和云南省所在流域;大于1000hm2的被开垦林地则几乎全部分布于松辽流域、黑龙江流域和东北东部流域。坡度大于3°的毁林开荒地面积占总面积的295%;对土壤侵蚀背景的分析表明,土壤侵蚀强度以微度和轻度为主  相似文献   

11.
东北低山丘陵区是重要的粮食主产区和商品粮基地,高强度的农业垦殖造成了严重的水土流失,侵蚀沟危害日益加剧。选择东辽河上游106.5 km2的区域为研究区,基于分辨率2 m的遥感影像,在GIS人工预判读侵蚀沟的基础上,野外实地验证并测量了研究区内长度≥50 m、且深度≥0.5 m的侵蚀沟的几何参数与经纬度;基于DEM获取了侵蚀沟所在坡面的坡度、坡向和高程等空间信息;分析了研究区侵蚀沟的基本特征与时空演化趋势,探讨了坡度和坡向对侵蚀沟发育的影响。结果表明:① 目前研究区已形成侵蚀沟322条,分布密度为3.0条/km2,沟壑密度为0.8 km/km2,割裂度为1.4%,侵蚀沟发展速度快,沟蚀强度已达强烈程度,应引起足够重视。② 侵蚀沟主要分布在6°~9°的坡耕地上,坡度对沟蚀的影响明显,坡耕地高强度垦殖是沟蚀加剧的主要驱动力;③ 阳坡(S、E)上侵蚀沟分布相对较多,而阴坡(N)上侵蚀沟分布最少,坡向对沟蚀也有一定影响。研究成果为认识东北低山丘陵区侵蚀沟发生与演化提供了科学数据。  相似文献   

12.
安徽省土壤侵蚀空间分布及其与环境因子的关系   总被引:10,自引:1,他引:9  
程先富  余芬 《地理研究》2010,29(8):1461-1470
基于USLE和GIS空间分析技术,对安徽省土壤侵蚀空间分布进行了定量研究,分析了土壤侵蚀空间分布与地形、土壤类型、土地利用方式的关系。结果表明:安徽省2002年平均土壤侵蚀模数为249.5t/km2·a,土壤侵蚀总量为33599148t/a。土壤侵蚀空间分布呈块状分布特征。淮北平原地区土壤侵蚀较弱,皖南丘陵山区和皖西大别山区土壤侵蚀较严重。在不同高程带上,200~500m高程带土壤侵蚀最强;不同坡度等级中,15°~25°坡度上的土壤侵蚀最强,>35°坡地上则较弱;不同坡向中,东南坡土壤侵蚀最强,其次是东坡;不同用地类型的土壤侵蚀程度不同,草地的土壤侵蚀最为严重,其次是林地;在各种土壤类型中,紫色土和黄褐土的土壤侵蚀最为突出,棕壤的土壤侵蚀微弱。  相似文献   

13.
基于WaTEM/SEDEM模型的沂河流域土壤侵蚀产沙模拟   总被引:1,自引:0,他引:1  
基于WaTEM/SEDEM模型,结合临沂水文站和角沂水文站的输沙数据对模型进行校正和验证,分析模拟1975—2015年沂河流域侵蚀产沙的时空变化特征,并进一步研究降水、地形位和土地利用变化对流域侵蚀产沙的影响。结果表明:① 沂河流域输沙能力系数Ktc-low和Ktc-high在40 m和150 m组合下效果最优,模型在沂河流域具有较好的适用性。② 1975—2015年,沂河流域主要以侵蚀为主,微度侵蚀所占面积最大,其次是剧烈侵蚀,沉积主要分布在河谷处;流域侵蚀强度呈现先增加后减少的趋势,侵蚀模数由1975年的30.92 t·hm-2·a-1增加至1995年的49.32 t·hm-2·a-1再下降至2015年的29.60 t·hm-2·a-1;各县(区)平均侵蚀模数为沂水县>费县>沂南县>沂源县>蒙阴县>平邑县>兰山区。③ 沂河流域土壤侵蚀产沙强度的变化是降水、地形、土地利用等综合作用的结果。1975—2015年,流域降雨侵蚀力呈现先降低后升高又降低的变化趋势,各县(区)平均降雨侵蚀力为费县>兰山区>沂南县>蒙阴县>平邑县>沂水县>沂源县,降雨侵蚀力时空变化与流域侵蚀产沙强度时空变化并不完全一致;地形位等级空间分布与流域侵蚀产沙强度空间分布基本一致,侵蚀产沙的优势地形位区间是4~6级,即高程75~428 m,坡度5°~39°;耕地和林地的转化是土壤侵蚀强度转化最主要的原因,林地转化为耕地使侵蚀强度面积升高3389.97 hm2·a-1,耕地转林地则使侵蚀强度面积降低2216.65 hm2·a-1,草地与其他土地利用类型的转化对流域侵蚀强度影响较小。该研究可为区域土地利用方式调整和水土流失调控提供参考。  相似文献   

14.
以河龙区间42个流域为对象,在流域地貌格局信息提取和侵蚀产沙过程特征指标计算及其相互关系分析的基础上,探讨地貌格局对流域侵蚀产沙过程的影响。结果表明:①在河道系统水平,河流数量、长度等几何特征指标和河流分叉率(Rb12)、分级率(Rd32)、相邻级别间的河流长度比等形状特征指标与流域侵蚀模数显著相关;②在流域系统水平,坡度粗糙度、相对高差、圆度比、高长比是影响流域侵蚀产沙过程的主要指标,其中坡度粗糙度是最根本的解释变量;③各地貌格局因子间相互作用复杂,且对侵蚀过程的影响要强于泥沙输移过程,其通径分析模型对流域侵蚀模数、输沙模数和泥沙输移比变化的解释度分别为65%、33%和20%。这对正确认识影响流域侵蚀产沙过程的格局因素和建立准确的过程模型,具有重要参考价值。  相似文献   

15.
应用EUROSEM模型对三峡库区陡坡地水力侵蚀的模拟研究   总被引:10,自引:3,他引:7  
王宏  蔡强国  朱远达 《地理研究》2003,22(5):579-589
三峡库区坡地资源被广泛利用,但水土保持措施没有被很好地利用。坡地,尤其是陡坡地是库区主要泥沙来源,因此,有效评估土壤侵蚀风险、预测径流和侵蚀速率以及选择合理的水土保持措施在该地区显得非常必要。EUROSEM模型是动态分布式模型,可以在单独地块或小流域中预测水力侵蚀强度,其特点比较适合库区土壤侵蚀预测预报。本研究以在三峡库区秭归县王家桥小流域水土保持试验站的标准径流小区的人工降雨资料为基础,应用EUROSEM模型模拟陡坡地中的侵蚀状况。模拟结果表明,EUROSEM对人工降雨中径流模拟效果较好,但对土壤流失的模拟效果相对较差,更精确地模拟库区陡坡地的土壤侵蚀状况则需要作进一步的研究  相似文献   

16.
周颖  曹月娥  杨建军  刘巍  吴芳芳 《中国沙漠》2016,36(5):1265-1270
以准噶尔盆地东部露天矿区为研究区,基于GIS技术和土壤风蚀理论,结合研究区自然环境现状,选取植被覆盖度、土地利用类型、土壤可蚀性指数(K值)、地形起伏度为土壤风蚀危险度评价因子,建立土壤风蚀危险度模型,对研究区土壤风蚀危险度进行评价分析。结果表明:研究区土壤风蚀无险型区域面积28.99 km2(0.13%),轻险型区域面积为2 100.66 km2(9.42%),危险型区域面积为5 066.56 km2(22.72%),强险型区域面积为14 593.12 km2(65.44%),极险型区域面积为646.7 km2(2.29%)。在各个因子的影响下,研究区的风蚀危险度极高,强险型为研究区内最主要的等级程度。研究区土壤风蚀危险度从南向北危险度有增加的趋势,且成片状分布,与实际情况相吻合,说明基于GIS技术的土壤风蚀危险度评价可宏观地揭示新疆准东地区土壤风蚀危险度空间格局分异特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号