首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Aleutian high-alumina basalt from the island of Atka at one atmosphere crystallizes plagioclase (1275°C) followed by olivine (1170°C) and clinopyroxene (1115°C). At oxygen fugacities along NNO, magnetite crystallizes below 1070°C, but its liquidus increases to at least 1175°C at an oxygen fugacity two log units above NNO. Phase relations at two kilobars pressure of melts containing small amounts of water are similar, although orthopyroxene and magnetite are observed to follow clinopyroxene. Amphibole crystallizes at near-liquidus temperatures only at water contents of melts approaching 4.5%. Amphibole assumes the liquidus in melts containing 5% water.Anhydrous melts crystallize plagioclase to 19 kbar, where garnet and clinopyroxene assume the liquidus. Olivine yields to clinopyroxene as the highest-temperature subliquidus phase at about 9 kbar.The array of compositions of basaltic Atka rocks, as displayed on appropriate pseudoternary projections, can be interpreted as a crystal fractionation path at moderate pressure (8 kbar) and small melt-water contents. The interpreted fractionating minerals are olivine, clinopyroxene, plagioclase, and (probably) magnetite. (The actual phenocrysts in Atka basalts like AT-1, which lacks phenocrystic clinopyroxene, must have crystallized at pressure less than 8 kbar, however.) The compositions of two-pyroxene andesites from Atka can be interpreted to lie on a lower-pressure fractionation trend at melt water contents of 2–3%. Such water contents are consistent with the complete absence of amphibole in any Atka rocks and are suggestive that water contents of the basaltic magmas, if the basalts are parental to the andesites, were 1–2%.  相似文献   

2.
Gabbroic rocks occur only in the west, and are the oldest intrusions in the Peninsular Ranges Cordilleran batholith. They comprise an olivine-pyroxene gabbronorite series and an amphibole gabbro series both of which contain abundant plagioclase and amphibole. They formed by crystal accumulation and in situ differentiation, in multiple intrusive complexes, and are not considered to be related by fractionation to the granitoid rocks of the batholith.Pure mineral separates of plagioclase, olivine, clinopyroxene, orthopyroxene, and amphibole were obtained by magnetic and heavy-liquid methods from a representative suite of gabbroic rocks. Their major- and trace-element contents were determined by X-ray fluorescence, and the data used to test hypotheses on the genesis and fractionation of the gabbros.The plagioclases range from An98 to An65 in composition, olivines, Fo79 to Fo70, occur in rocks where An>36. All clinopyroxenes are augite with Mg #'s varying from 81.1 to 64.7. Orthopyroxene occurs where An<92, and is generally inverted pigeonite or bronzite, and has Mg #'s ranging from 77.9 to 52.1. The amphiboles include tschermakite, tschermakitic hornblende, pargasite, pargasitic hornblende, ferroan pargasite, magnesio-hornblende, and magnesio-taramite, Mg #'s range from 80.4 to 62.5. Systematic chemical and mineralogical changes confirm that differentiation, controlled by mineral assemblages of plagioclase, olivine, spinel, and clinopyroxene initially, and orthopyroxene, amphibole, and magnetite later, took place between intrusive episodes and in situ.The highly clacic plagioclase coexisting with olivine and amphibole suggests that the gabbros were formed from hydrous mafic magmas. The modal mineralogy of the gabbros, and the chemistry of the minerals is very similar to that of the cumulate blocks of the Lesser Antillean volcanoes. These features confirm that the gabbros were derived from a hydrous mafic magma, with high Al2O3 and low TiO2 contents, typical of orogenic environments.Cumulate minerals from the gabbros show little or no zoning and are considered to have formed in equilibrium with the evolving melts. Selected trace-element contents and distribution coefficients are used to calculate the compositions of the melts. The calculations show that the melts in equilibrium with the olivine-pyroxene gabbronorite series contain approximately 100–200 ppm Ba, 200–400 ppm Sr, 30-10 ppm Ni, 20-10 ppm Co, and 300-100 ppm V. K/Rb ratios of the melts, derived from post-cumulus and prismatic amphiboles, are generally in the range 550-250. These values are typical of calc-alkalic basalts and andesites, and it is suggested that they may have erupted at the surface to form a coeval calc-alkalic volcanic sequence.  相似文献   

3.
Carriacou is small volcanic island located near the southern end of the Lesser Antillean chain. Field relationships, petrography and geochemistry of the Tertiary lavas, outcropping in the southern half of the island, are used to identify the rocks present and to determine their petrogenesis and assess their significance within the island arc.Six main volcanic units are present. From oldest to youngest, these are the clinopyroxene-phyric basalt (CPB) sequence, the amphibole-phyric andesite (APA) sequence, the clinopyroxene-megaphyric basalt (CMB) sequence, the olivine-microphyric basalt (OMB) sequence, the clinopyroxene phyric andesite (CPA) sequence, and the amphibole-megaphyric andesite (AMA) sequence. Volcaniclastic deposits are associated with the APA, CMB, and AMA sequences. The APA sequence is calcalkaline, whereas the other five sequences are tholeiitic.Sr isotope and rare earth element (REE) data suggest that these volcanic rocks were derived from partial melts of garnet-peridotite generated deep within the mantle. The OMB lavas have the highest temperature assemblages of intratelluric minerals and the least evolved chemical characteristics, and are considered to be closest in composition to a parental melt. Phenocryst assemblages and chemical variation suggest that the andesite sequences have been derived from the mafic melts by low pressure fractional crystallization of approximately 20% clinopyroxene and 20% olivine, plus smaller amounts of plagioclase and amphibole. The high concentrations of incompatible and compatible elements and the high87Sr/86Sr ratios may indicate that subduction is slower in the southern part of the arc, and fluids released during slab dehydration rich in Incompatible trace elements, in Radiogenic strontium, and in Silica (IRS), have modified the parental melts.  相似文献   

4.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

5.
Melting relations of a glassy magnesian olivine tholeiite from the FAMOUS area have been studied within the pressure range 1 atm to 15 kbar. From 1 atm to 10 kbar, olivine is the liquidus phase, followed by plagioclase and Ca-rich clinopyroxene. Above 10 kbar, Ca-rich clinopyroxene appears on the liquidus, followed by orthopyroxene and spinel. Near 10 kbar, olivine, orthopyroxene, clinopyroxene, spinel and plagioclase crystallize within 10°C of the liquidus. This indicates that a liquid of this magnesian olivine tholeiite composition could coexist with mantle peridotite at about 10 kbar. This result is in agreement with the geochemistry of Ni; the Ni concentration of the studied sample corresponds to the theoretical concentration in a primary magma [14,15].These data suggest that at least some magnesian mid-oceanic ridge basalts (MORBs) could be primary melts segregated from the mantle at depths near the transition zone between plagioclase lherzolite and spinel lherzolite (about 10 kbar). Based on this model, the residual mantle after extraction of MORBs should be lherzolite, not harzburgite.High-pressure (7–10 kbar) fractionation models involving olivine, plagioclase and clinopyroxene, which have been proposed by several workers (e.g. [36]) to explain the varieties of MORBs, were re-emphasized based on this melting study. The rare occurrence of clinopyroxene as a phenocryst phase in MORBs is explained by precipitation in a magma chamber at high pressure, or by dissolution of clinopyroxene formed earlier at high pressure.  相似文献   

6.
A picrite lava (22 wt% MgO; 35 vol.% ol) along the western shore of the1.3–1.4 Ma Kahoolawe tholeiitic shield, Hawaii, contains small xenoliths of harzburgite, lherzolite, norite, and wehrlite. The various rock types have textures where either orthopyroxene, clinopyroxene, or plagioclase is in a poikilitic relationship with olivine. The Mg#s of the olivine, orthopyroxene, and clinopyroxene in this xenolith suite range between 86 and 82; spinel Mg#s range from 60 to 49, and plagioclase is An75–80. A 87Sr/86Sr ratio for one ol-norite xenolith is 0.70444. In comparison, the host picrite has olivine phenocrysts with an average Mg# of 86.2 (range 87.5–84.5), and a whole-rock 87Sr/86Sr ratio of 0.70426. Textural and isotopic information together with mineral compositions indicate that the xenoliths are related to Kahoolawe tholeiitic magmatism, but are not crystallization products of the magma represented by their host picrite. Rather, the xenoliths are crystalline products of earlier primitive liquids (FeO/MgO ranging 1 to 1.3) at 5–9 kbar in the cumulate environment of a magma reservoir or conduit system. The presence of ultramafic xenoliths in picrite but not in typical Kahoolawe tholeiitic lava (6–9 wt% MgO) is consistent with replenishment of reservoirs by dense Mg-rich magma emplaced beneath resident, less dense tholeiitic magma. Mg-rich magmas have proximity to reservoir cumulate zones and are therefore more likely than fractionated residual liquids to entrain fragments of cumulate rock.  相似文献   

7.
The Yixian Formation at Sihetun in western Liao- ning Province has attracted considerable attention over the last two decades due to discovery of a wide range of well-preserved ‘feathered’ dinosaurs and primitive bird fossils[1―4]. This formation is dominated by vol- canic rocks, with fossil-bearing lacustrine sedimentary rocks at the upper part of the section[4]. The sedimen- tary rocks contain thin layers of tuff. According to previous studies[4], the total thickness of the Yixian Form…  相似文献   

8.
Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ∼2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ∼400 km3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ∼1.3 km3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994–1995.A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994–1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb–Ta and enrichments of K–Rb–Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile.BI basalts and basaltic andesites have variable abundances of phenocrystic–microphenocrystic olivine plus Cr–Al–Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of relatively homogeneous anorthitic plagioclase (to An95.7). These have inclusions of Mg olivine (to Fo79) and thin (10–150 μm) normally zoned margins that reach to the more sodic compositions of the plagioclase phenocryst and microphenocryst rims. Anorthitic plagioclase crystals are common at many subduction-related volcanoes. At BI, the anorthitic plagioclase and associated olivine crystals are thought to have entered the magmas through disaggregation of troctolitic crystal mushes or plutonic xenoliths. This process affected bulk-rock compositions in many ways, including raising Al2O3 contents to values as high as 22.8 wt.% and Eu / Eu* values up to 1.05. Compared to a large petrological and geochemical database for Indonesian volcanic rocks, the BI suite falls at the most depleted end for levels of K and incompatible trace elements, and Sr, Nd, and Pb isotopic ratios. Consequently, the BI suite defines an excellent primitive baseline against which Indonesian volcanic suites can be compared.  相似文献   

9.
GHODRAT TORABI 《Island Arc》2012,21(3):215-229
Late Permian trondhjemites in the Anarak area occur as stocks and dykes, which cross cut the Anarak ophiolite and its overlying metasedimentary rocks, and are exposed along the northern Anarak east–west main faults. These leucocratic intrusive bodies have enclaves of all ophiolitic units and metamorphic rocks. They are composed of amphibole, plagioclase (oligoclase), quartz, zircon and muscovite. Secondary minerals are chlorite (pycnochlorite), epidote, albite, magnetite and calcite. Whole‐rock major‐ and trace‐element analyses reveal that they are characterized by high SiO 2 (67.8–71.0 wt%), Al 2 O 3 (14.9–17.1 wt%) and Na 2 O (5.3–8.6 wt%), low K 2 O (0.1–1.5 wt%; average: 0.8 wt%), low Rb/Sr ratio (0.01–0.40; average: 0.09), low Y (3–6 ppm), negative Ti, Nb and Ta anomalies, slightly negative or positive Eu anomaly, LREE enrichment and fractionated HREE. These rocks present 2 to 40 times enrichment in inclined chondrite‐normalized REE patterns. Geochemical characteristics of the Anarak trondhjemites all reflect melting of a mafic protolith at more than 10 kbar. The field evidence and whole‐rock chemistry reveal that these rocks have been crystallized from magmas derived from melting of subducted Anarak oceanic crust. This study reveals that melting of garnet amphibolite was an important element of continent formation in the study area.  相似文献   

10.
87Sr/86Sr and143Nd/144Nd ratios, REE and selected minor and trace elements are presented and compared for present-day volcanic rocks in the Scotia Sea.Tholeiitic basalts from the South Sandwich Islands show widely ranging contents of some lithophile elements, e.g. K2O (0.09–0.55%) and Rb (1.55–14.2 ppm), but fairly constant Na2O and Sr. Total REE contents range from about 4–20 times chondritic abundances with significant light-REE depletion and both positive and negative Eu anomalies. The variations in minor and trace element abundances are consistent with low-pressure fractional crystallization of plagioclase and clinopyroxene but only minor amounts of olivine. The87Sr/86Sr and143Nd/144Nd ratios of the parental magmas are thought be 0.7038–0.7039 and 0.51301–0.51314 respectively, and indicate derivation of at least some87Sr from subducted ocean crust.The back-arc tholeiites in the Scotia Sea have lower87Sr/86Sr ratios (0.7028–0.7033), similar143Nd/144Nd ratios (0.51305) and are variably light-REE-enriched(CeN/YbN= 1.0–1.6). Total REE contents are comparable to those of the South Sandwich Islands tholeiites.  相似文献   

11.
Whole‐rock geochemical and Sr–Nd isotopic data are presented for late Miocene volcanic rocks associated with the Chah Zard epithermal Au–Ag deposit in the Urumieh‐Dokhtar Magmatic Arc (UDMA), Iran, to investigate the magma source, petrogenesis and the geodynamic evolution of the study area. The Chah Zard andesitic to rhyolitic volcanic rocks are characterized by significant Large Ion Lithophile Element (LILE) and Light Rare Earth Element (LREE) enrichment coupled with High Field Strength Element (HFSE) depletion. Our geochemical data indicate an adakitic‐like signature for the volcanic rocks (e.g. SiO2 > 62 wt%, Al2O3 > 15 wt%, MgO < 1.5 wt%, Sr/Y > 70, La/Yb > 35, Yb < 1 ppm, and Y < 18 ppm, and no significant Eu anomalies), distinguishing them from the other volcanic rocks of the UDMA. The Chah Zard volcanic rocks have similar Sr and Nd isotopic compositions; the 87Sr/86Sr(i) ratios range from 0.704 902 to 0.705 093 and the εNd(i) values are from +2.33 to +2.70. However, the rhyolite porphyry represents the final stage of magmatism in the area and has a relatively high 87Sr/86Sr ratio (0.705 811). Our data suggest that the andesitic magmas are from a heterogeneous source and likely to result from partial melting of a metasomatized mantle wedge associated with a mixture of subducted oceanic crust and sediment. These melts subsequently underwent fractional crystallization along with minor amounts of crustal assimilation. Our study is consistent with the model that the volcanic host rocks to epithermal gold mineralization in the UDMA are genetically related to late Miocene Neo‐Tethyan slab break‐off beneath Central Iran.  相似文献   

12.
This paper addresses formation of felsic magmas in an intra‐oceanic magmatic arc. New bathymetric, petrologic, geochemical, and isotopic data for Zealandia Bank and two related volcanoes in the south‐central Mariana arc is presented and interpreted. These three volcanoes are remnants of an older andesitic volcano that evolved for some time and became dormant long enough for a carbonate platform to grow on its summit before reawakening as a rhyodacitic volcano. Zealandia lavas are transitional between low‐ and medium‐K and tholeiitic and calc‐alkaline suites. They define a bimodal suite with a gap of 56–58 wt% SiO2; this suggests that mafic and felsic magmas have different origins. The magmatic system is powered by mantle‐derived basalts having low Zr/Y and flat rare earth element patterns. Two‐pyroxene thermometry yields equilibration temperatures of 1000–1100 °C for andesites and 900–1000 °C for dacites. Porphyritic basalts and andesites show textures expected for fractionating magmas but mostly fine‐grained felsic lavas do not. All lavas show trace element signatures expected for mantle and crustal sources that were strongly melt‐depleted and enriched by subduction‐related fluids and sediment melts. Sr and Nd isotopic compositions fall in the normal range of Mariana arc lavas. Felsic lavas show petrographic evidence of mixing with mafic magma. Zealandia Bank felsic magmatism supports the idea that a large mid‐ to lower‐crustal felsic magma body exists beneath the south‐central Mariana arc, indicating that MASH (mixing, assimilation, storage, and homogenization) zones can form beneath intra‐oceanic as well as continental arcs.  相似文献   

13.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

14.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

15.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

16.
Compositional and isotopic zoning patterns in plagioclase and amphibole phenocrysts from El Chichón record multiple cycles of country rock assimilation, magma injection, hybridization, and mixing. Laser ablation ICP-MS and electron microprobe analyses of plagioclase crystals from 7 eruptions spanning 3100 years reveal four types of zoning. These compositional and isotopic zones are often associated with textural changes observed in the crystals in thin section (e.g. sieved or patchy regions). Amphiboles are frequently zoned in Al and Si, and, in two magmas, may have clinopyroxene rims. Interestingly, most plagioclase show multiple and repeated zoning patterns. Moreover, all magmas contain all zoning patterns and textures, and crystals with substantially different sequences of zones occur within mm of one another. The most reasonable explanation for the origin of these textures is a frequently recharged chamber. Plagioclase zones with increasing anorthite contents (An) and decreasing 87Sr/86Sr ratios record injection by a hotter, possibly wetter, and more primitive magma (lower 87Sr/86Sr ratio). Zones with decreasing An and increasing 87Sr/86Sr ratios record assimilation of country rock and/or hybridization of the host and injected magmas; injection of hot magma may provide the heat for country rock assimilation. Changes in An without corresponding changes in 87Sr/86Sr ratio likely record slight variations in pressure or temperature during crystallization, or the far-field thermal effects of magma injection. Variations in 87Sr/86Sr ratio unaccompanied by Anzoning record assimilation of country rock. Amphibole zoning patterns also record periodic heating events; amphibole with clinopyroxene rims record episodes where the magma was heated beyond the amphibole stability field. Bulk compositional homogeneity and the juxtaposition of many crystals with disparate zoning patterns in single pumice require the magmatic system to be well mixed. Strontium diffusion rates indicate that the plagioclase zoning patterns cannot have persisted at magmatic pressures and temperatures for more than ~ 500 years, thus cycles of injection and assimilation occur on timescales equal to or shorter than the eruption recurrence interval. Long-term compositional and isotopic homogeneity indicate that there is a balance between recharge, assimilation, and crystallization.  相似文献   

17.
We report Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts. A precise internal Rb-Sr isochron yields a crystallization age of 3.35±0.09 AE and initial87Sr/86Sr=0.69922?2 (2σ error limits, 1AE=109 years, λ(87Rb)=0.0139AE?1). An internal Sm-Nd isochron yields an age of 3.28±0.23AE and initial143Nd/144Nd=0.50764?28. Present-day143Nd/144Nd is less than the “chondritic” value, i.e. ?(Nd, 0)=?2.3±0.4 where ?(Nd) is the deviation of143Nd/144Nd from chondritic evolution, expressed as parts in 104. At the time of crystallization ?(Nd, 3.2AE)=1.5±0.6.We have successfully modeled the evolution of the Sr and Nd isotopic compositions and the REE abundances within the framework of our earlier model for Apollo 12 olivine-pigeonite and ilmenite basalts. The isotopic and trace element features of 12038 can be modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb=2.2 for this hypothetical magma ocean pattern. A plot of I(Sr) versus ?(Nd) for the Apollo 12 basalts clearly shows the influence of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase in the basalt source regions. A small percentage of plagioclase (~5%) in the 12038 source apparently is responsible for low I(Sr) and ?(Nd) in this basalt. Aluminous mare basalts from Mare Crisium (Luna 24) and by inference Mare Fecunditatis (Luna 16) occupy locations on the I(Sr)-?(Nd) plot similar to that of 12038, implying that some basalts from three widely separated lunar regions came from plagioclase-bearing source regions. A summary of model calculations for mare basalts shows a record of lunar mantle solidification during the period when REE abundances in the lunar magma ocean increased from ~20× chondritic to >100× chondritic. Although there is a general trend from olivine to clinopyroxene-dominated source regions with progressive magma ocean evolution, significant mineralogical heterogeneities in mantle composition apparently formed at any given stage of evolution, as evidenced in particular by the three Apollo 12 magma types.  相似文献   

18.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

19.
Twenty-three volcanic rocks from the Setouchi volcanic belt, southwest Japan, were analyzed for Nd and Sr isotopic compositions for the purpose of examining the genetic relationships among the basalt, high-magnesium andesite (HMA) and evolved porphyritic andesite. The andesites have higher87Sr/86Sr (0.70487–0.70537) and lower143Nd/144Nd (0.512509–0.512731) than the basalts, i.e., 0.70408–0.70468 and 0.512691–0.512830, respectively. This result confirms earlier conclusions obtained from petrologic study that the andesites cannot be fractionation products of basaltic magma but that the andesitic and basaltic magmas were generated independently. On the basis of melting experiments for HMA and basalt, it is inferred that there is an isotopically stratified mantle beneath southwest Japan. Evolved porphyritic andesites have essentially identical Sr and Nd isotopic ratios to HMA and can be derived by fractionation of primary andesitic magma. A model to produce orogenic andesite is proposed on petrologic, experimental and isotopic bases.  相似文献   

20.
The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号