首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
连续台风对海表温度和海表高度的影响   总被引:1,自引:0,他引:1  
利用多卫星观测资料,分析了2008年9月3个连续台风前后的海表温度(SST)和海表高度距平(SSHA)的时空变化特征,并探讨了影响其变化的主要因子。结果表明:(1)3个台风引起了强烈的上升流(1×10-5~150×10-5 m/s),海表显著降温(1~6 ℃),海表高度也有不同程度降低(10~50 cm);(2)台风引起的SST最大降温中心与SSHA负值或中尺度冷涡的区域中心十分吻合,同时台风使得先前存在的海洋中尺度冷涡得到加强;(3)同一区域台风对SST影响程度大小受台风的强度、移动速度以及台风对海面强迫时间等因素控制;(4)在原先SSHA为正值的海域,3个台风连续强迫下使得局地洋面形成一个SSHA为负值的中尺度涡,这与单一"打转"台风强迫海洋生成中尺度涡的现象不同。因此,对于西北太平洋海域而言,频发的台风在中尺度涡生消演变过程中的影响应不容忽视。  相似文献   

2.
上层海洋对台风"凯萨娜"(2009)的响应特征   总被引:1,自引:1,他引:0  
本文利用多源卫星遥感数据和Argo浮标数据对2009年台风"凯萨娜"过后,南海上层海洋的物理和生态响应特征进行了分析。结果表明,"凯萨娜"引起的上升流流速最大可以达到1.6×10~(–3)m/s,台风过后,海表面温度(SST)下降显著,最大降温幅度可以达到6℃,海表面高度降低,先前存在的中尺度冷涡进一步加强。台风过后,沿着台风路径,叶绿素浓度升高,最大值可以达到2 mg/m~3以上,初级生产力升高到台风过境前的5倍。SST的最大降温中心与海面高度下降区域以及叶绿素浓度升高的区域一致。Argo数据表明台风诱发了强烈的垂向混合和艾克曼泵吸,不同位置处,垂向混合和艾克曼泵吸的强度不一样。通过混合和泵吸过程,台风可以把海洋内部的营养盐输送到海洋表层,对整个南海的物理和生态过程有重要影响。  相似文献   

3.
台风"苏力"是2013年最强的台风之一。本文利用再分析资料、卫星遥感资料及ARGO浮标数据等分析了台风过境所引起的海表面温度(SST)、海表面高度异常(SLA)以及海洋次表层温、盐的变化规律,给出了上层海洋对台风响应的基本特征。台风所经过的海域都存在着明显的降温,在冷涡区域引起了6~7℃的海表温度的冷却,降温区域集中在路径的右侧。台风造成SLA降低,最大为20cm左右。海表温度的变化滞后于海面高度的变化。ARGO浮标数据显示,台风引起了海面的显著降温,最大降温幅度为5℃,位于冷涡内,且位于路径的右侧。路径左侧的SST的降低相对较小,为1.5~2.5℃。台风的扰动导致次表层水涌升到表层,改变了表层的盐度和密度,引起混合层加深。  相似文献   

4.
边缘海初级生产力普遍较高,有机碳在沉积物中的埋藏高达全球的80%。黄渤海是位于我国东部的一个半封闭的温带陆架边缘海,在近20年中,黄渤海经历的台风事件频率不断增大,对碳循环关键过程发生多重影响。文章利用多组卫星及再分析资料,围绕2003~2020年期间夏季台风过境对黄渤海关键环境变量的影响,分析生物和非生物过程对不同海域水体中颗粒有机碳的贡献。结果表明,夏季台风过境一次、两次对黄渤海叶绿素的影响没有明显差异,叶绿素浓度增加主要在渤海西南部和南黄海约50%的海域。总体上看,台风过境对渤海、北黄海大部分海域水体中颗粒有机碳影响不大,但两次台风过境引起了南黄海约80%的离岸海域颗粒有机碳浓度的显著增加。南黄海中部海域水体中颗粒有机碳与叶绿素的比值在台风过后明显降低,表明该海域颗粒有机碳浓度的提高主要是由生物固碳过程的增强引起。台风过境加剧了黄海与渤海、近岸与离岸的水流交换,此过程增强了高营养盐和有机物水向南黄海尤其是中部海域的输送,因而提高了南黄海大部分海域颗粒有机碳浓度。除了光合作用等生物过程及水流交换对颗粒有机碳有影响外,黄渤海水体中颗粒有机碳浓度还受到沉积物再悬浮、陆源有机碳输入等过程的影响。台风过境可以加剧沉积物再悬浮和陆源有机物的输入,进一步提高黄渤海近岸及离岸海域颗粒有机碳的浓度。  相似文献   

5.
文章选取2011-2012年出现在西北太平洋地区的3个不同类型的台风,利用中国台风网"CMA-STI热带气旋最佳路径资料数据"和多卫星遥感观测资料,分析了台风对大洋以及中国近海海表温度的影响。分析结果表明,台风对SST的影响程度与台风自身强度和台风的移速密切相关。SST降低区域一般位于台风路径的右侧,台风在大洋右转向时可形成显著降温区。最大SST降低一般滞后台风中心2d或1d,在台风过境后,该海域降低的SST恢复时间也较长。  相似文献   

6.
本文利用卫星高度计数据和分析数据,并结合同时期现场深水潜标的流速观测数据,研究了超强台风泰利过境前后台湾东北附近海域流场、位势密度场、位势涡度场以及黑潮入侵东海陆架强度的变化。分析结果表明,泰利台风通过改变台湾东北陆坡附近海域的流场、位势密度场,显著地削弱(增强)了西段(东段)陆坡附近的位势涡度梯度,从而使得西段(东段)陆坡黑潮入侵东海陆架的强度显著增强(减弱)。此外,本文还区分了台湾东北西部陆坡附近表层的跨陆坡“上凸型”位势涡度分布与次表层的跨陆坡“下凹型”位势涡度分布,并认为次表层的跨陆坡“下凹型”位势涡度分布也应作为台湾东北西部陆坡附近“位势涡度障碍”的重要组成部分。本文的研究结果揭示了大气中的台风过程对台湾东北黑潮入侵东海陆架产生显著影响的关键过程及机制,相关结论可为台湾东北黑潮入侵东海陆架变化规律的研究提供有价值的参考。  相似文献   

7.
通过2008年8月南海北部浮游有孔虫拖网调查,对12号台风“鹦鹉”过境前后南海北部水体中的活体浮游有孔虫群落进行了对比分析,结合海洋环境参数,初步探讨了台风对水体浮游有孔虫群落分布的影响,以增加对浮游有孔虫群落的环境生态的了解,为古环境重建积累基础资料.结果显示,台风过境后的浮游有孔虫丰度较台风来临前有明显降低,优势属种Globigerinoides sacculifer的相对百分含量在台风过境后有明显的降低,而生活在次表层水体中的Globigerina calida和Globigerinella aequilateralis的相对百分含量则在台风过境后明显上升.研究认为台风过境造成的水体垂直混合增强可能是导致浮游有孔虫群落变化的主要因素.  相似文献   

8.
台风对海洋叶绿素a浓度影响的延迟效应   总被引:2,自引:1,他引:1  
利用MODIS、SeaWiFS 3A资料详细分析了2000-2006年间西北太平洋海域主要台风对叶绿素a浓度的影响.结果发现,台风可导致叶绿素a浓度最大增长平均值为2.385倍,个别最高达10倍以上,且增长到最大值平均延迟5.94d;同时叶绿素a浓度最大值与无台风时叶绿素a浓度具有线性相关性,相关系数达0.889;叶绿素a浓度与相应的海域平均海水深度具有负的乘幂关系,其相关系数是0.87;台风后叶绿素a浓度的最大增长量与相应海域海水平均深度也呈负乘幂关系,其相关性略低于前者,相关系数为0.75.  相似文献   

9.
龙小志  王珍岩 《海洋与湖沼》2022,53(6):1322-1337
台风作为事件性的强动力因素,其对河口海域沉积环境的影响目前研究较少,开展典型台风事件对长江口外海域悬浮体分布的影响研究对于深入理解长江径流挟带陆源物质向东海陆架扩散机制等具有重要意义。利用2015年09号台风"灿鸿"过境前后长江口外海域现场调查数据,分析台风前后长江口外水体结构和悬浮体粒度分布变化,结合同期环境观测数据与开源数据,阐明台风对河口外海域悬浮体分布的影响机制。结果表明:长江口外海域悬浮体中细颗粒组分(≤ 128μm)主要为无机矿物颗粒,而粗颗粒组分(>128μm)主要是生源有机颗粒。生源有机粗颗粒主要分布于中上层水体,而无机细颗粒主要分布于底层水体,使得长江口外海域悬浮体平均粒径分布呈双层结构。台风前后悬浮体粒度分布变化反映了台风对长江口外海域物理和生物过程的双重影响,其中物理过程主要影响无机细颗粒分布变化,生物过程主要影响有机粗颗粒。台风期间强烈的偏北风使得长江冲淡水在口门外海域由东北输运转为往东输运,与长江冲淡水输运方向一致的表层无机细颗粒在台风后输运方向同样往东。另外,台风作用在河口区产生的下降流将12250-4站位底部再悬浮的泥质沉积物向东搬运至12300-4站,导致12300-4站底层悬浮体浓度增加、粒度变细。台风过境还造成长江口外海域初级生产力提高,而浮游植物生长对悬浮体中有机粗颗粒的形成有促进作用,使得口门外海域上层水体中有机粗颗粒体积浓度升高。长江口外海域由于台风过境导致悬浮体中无机细颗粒和生源有机颗粒含量均增加,使得其平均粒径整体变化不大。  相似文献   

10.
台湾岛附近海洋对0908号台风“莫拉克”的响应特征   总被引:1,自引:1,他引:0  
在模拟2009年登陆我国东部沿海的台风"莫拉克"的基础上,利用AVHRR/AMSR和SODA再分析数据和模拟结果,初步评估了GRAPES-ECOM海-气耦合模式(上海台风研究所基于GRAPES-TCM区域台风模式和ECOM海洋模式开发而成)模拟台风期间海洋响应的能力,并分析了台风期间台湾岛周围海域的海温、上升流、中尺度冷涡等的变化特点。分析结果表明,GRAPES-ECOM耦合模式较好地模拟了表层海温对台风的响应,与深水海洋响应比较,揭示了近海对台风响应的一些新特征:(1)在台湾以东海域,台风活动改变了黑潮海域海水的垂直运动,诱导黑潮南部沿岸上升流,而北部先于台风存在的上升流减弱,导致不同水深海温的最大降温位置都出现在路径左侧,与深海偏向路径右侧不同;(2)位于台湾岛东北面的彭佳屿冷涡因其形成与大陆架和黑潮有关,当台风在台湾以东洋面活动时,冷涡位于台风右前方,黑潮表层海水辐合流向大陆架,冷涡中心温度上升,强度减弱,当台风转折北上,冷涡位于台风东南侧,表层海水辐散,加强底层冷水上涌,从而增强了该冷涡的强度;(3)台风不仅加深了台湾海峡的混合层深度,还使得海水的垂直热力结构改变,并使整层海温趋于一致。  相似文献   

11.
A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data.Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2 ℃ against its surrounding areas is also observed by the satellite-derived SST data.  相似文献   

12.
A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data. Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994 and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2℃against its surrounding areas is also observed by the satellite-derived SST data.  相似文献   

13.
针对海洋中尺度涡对水声传播的影响,利用中尺度涡区的历史水文实测数据提取涡旋强度,空间尺度等中尺度涡特征参数,建立了海洋中尺度涡理论计算模型。运用MMPE水下声场模型仿真试验研究了涡旋性质、强度和位置、声源频率和置放深度对声传播特性的影响。结果表明:暖涡使得会聚区的位置“后退”,会聚区宽度增加;冷涡使得会聚区的位置“前移”,会聚区宽度减小。涡旋的强度越大,“前移”或“回退”的效应越显著。  相似文献   

14.
通过对2014年8月31日-9月26日国家自然科学基金委南海西部综合航次的调查结果分析,发现在中南半岛沿岸海域存在具有低温高盐的冷涡和位于其东南部海域具有高温低盐的暖涡。相对于暖涡和其他海域,冷涡水团含有更高的营养盐,并在50 m、75 m和100 m层增加明显,DIP分别高0.21 μmol/L、0.39 μmol/L和0.23 μmol/L,DIN分别高4.94 μmol/L、7.56 μmol/L和3.76 μmol/L,DSi分别高2.55 μmol/L、5.25 μmol/L和3.46 μmol/L,说明冷涡对提高初级生产力具有明显的营养优势条件和巨大潜力;叶绿素a最大值均出现在50 m层,其中以海南岛近岸海域最大,冷涡在25 m层提高初级生产力明显,主要是受营养盐影响显著;而在75 m、100 m层可能受到冷涡带来的低温环境而导致叶绿素a含量不高。  相似文献   

15.
During the Austral summer of 2006-07 a series of extreme oceanic events occurred in the Tasman Sea. Following a series of strong wind-driven upwelling events, an intense cold-core eddy developed off Sydney, Australia. A data-assimilating, eddy-resolving ocean model is used to create a three-dimensional time-varying reanalysis of these events. The reanalysis indicates that the cold anomalies associated with the upwellings were in excess of −5 °C near the coast, where sea level decreased by as much as 0.2 m. The reanalysed three-dimensional structure of the cold-core eddy shows the eddy "leaning" to the west-north-west, in towards the continental shelf. The diameter of the eddy is about 100 km and the sea-level anomaly at the eddy centre peaks at around −1 m, with an associated sub-surface temperature anomaly in excess of −8 °C at 200 m depth, corresponding to an upward isotherm excursion of 600 m. The circulation around the cyclonic eddy is ageostrophic, with upwelling in the southern sector of the eddy (where flow is onshore and climbing the continental slope) and downwelling in the northern sector (where flow is descending off the slope). Three-dimensional trajectories of water parcels around the eddy involve 50-100-m vertical excursions. Based on the reanalysed circulation and composite satellite images of Chlorophyll-a, we hypothesise that the circulation around the eddy led to significant nutrient enrichment in the euphotic zone around the perimeter of the eddy.  相似文献   

16.
The biochemical effects of a cold-core eddy that was shed from the Kuroshio Current at the Luzon Strait bordering the South China Sea (SCS) were studied in late spring, a relatively unproductive season in the SCS. The extent of the eddy was determined by time-series images of SeaWiFS ocean color, AVHRR sea surface temperature, and TOPEX/Jason-1 sea surface height anomaly. Nutrient budgets, nitrate-based new production, primary production, and phytoplankton assemblages were compared between the eddy and its surrounding Kuroshio and SCS waters. The enhanced productivity in the eddy was comparable to wintertime productivity in the SCS basin, which is supported by upwelled subsurface nitrate under the prevailing Northeastern Monsoon. There were more Synechococcus, pico-eucaryotes, and diatoms, but less Trichodesmium in the surface water inside the eddy than outside. Prochlorococcus and Richelia intracellularis showed no spatial differences. Water column-integrated primary production (IPP) inside the eddy was 2–3 times that outside the eddy in the SCS (1.09 vs. 0.59 g C m−2d−1), as was nitrate-based new production (INP) (0.67 vs. 0.25 g C m−2d−1). INP in the eddy was 6 times that in the Kuroshio (0.12 g C m−2d−1). IPP and INP in the eddy were higher than the maximum production values ever measured in the SCS basin. Surface chlorophyll a concentration (0.40 mg m−3) in the eddy equaled the maximum concentration registered for the SCS basin and was higher than the wintertime average (0.29 ± 0.04 mg m−3). INP was 3.5 times as great and IPP was doubled in the eddy compared to the wintertime SCS basin. As cold core eddies form intermittently all year round as the Kuroshio invades the SCS, their effects on phytoplankton productivity and assemblages are likely to have important influences on the biogeochemical cycle of the region.  相似文献   

17.
In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.  相似文献   

18.
From January 9 to 17, 1981, detailed physical, chemical and biological measurements were made through the historical surface signature (Berstein, Breaker and Whritner, 1977; Burkov and Pavlova, 1980; Simpson, 1982) of a warm-core eddy in the California Current System. The data show a three-layer system: surface layer to 75 m, intermediate cold-core region to about 200 m, and the physically dominant subsurface warm-core eddy to about 1400 m. The chemical structure simultaneously possesses characteristics of both warm- and cold-core eddies. This structure results from a complex interplay among non-local eddy generation processes at the time the three-layer system was formed and a continuous set of interactions within the three-layer system, both inshore (cold) and offshore (warm) waters of the California Current and coastal and local biological processes (e.g. this California Current System eddy is not an isolated structure like some Gulf Stream rings). The dominant biological/chemical process in the euphotic zone is phytoplankton photosynthesis; photosynthetic alteration of the chemical structure below 100 m is much reduced. The effects of heterotrophic activity on the deeper-lying chemical structure, however are not as significant as those of autotrophs on the chemical structure of the euphotic zone. Hence, below 100 m, the distribution and structure of chemical properties is controlled primarily by physical processes. The continuous set of interactions of the three-layer system with coastal and oceanic waters of the California Current make this offshore eddy in the California Current System fundamentally different chemically and biologically from cold-core Gulf Stream rings and rather similar to some of the warm-core eddies found in the East Australian Current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号