首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Comprehensive qualitative and semi-quantitative seismic analysis was carried out on 3-dimensional seismic data acquired in the deepwater compressional and shale diapiric zone of the Niger Delta Basin using an advanced seismic imaging tool. The main aim of this work is to obtain an understanding of the forming mechanism of the gas hydrate system, and the fluid migration paths associated with this part of the basin. The results showed the presence of pockmarks on the seafloor and bottom simulating reflectors (BSRs) in the field, indicating the active fluid flux and existence of gas hydrate system in the area. In the area of approximately 195 km2 occupying nearly 24% of the entire study field, three major zones with continuous or discontinuous BSRs of 3 to 7 km in length which are in the northeastern, southern and eastern part of the field respectively were delineated. The BSR is interpreted to be the transition between the free gas zone and the gas hydrate zone. The geologic structures including faults (strike-slip and normal faults), chimneys and diapirs were deduced to be the main conduits for gas migration. It is concluded that the biogenic gases generated in the basin were possibly transported via faults and chimneys by advection processes and subsequently accumulated under low temperature and high pressure conditions in the free gas zone below the BSR forming gas hydrate. A plausible explanation for the presence of the ubiquitous pockmarks of different diameters and sizes in the area is the transportation of the excessive gas to the seafloor through these mapped geologic structures.  相似文献   

2.
Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea, such as bottom simulating reflections(BSRs), undersea gas springs, pyrite associated with methane leakage, mud diapirs/mud volcanos, bottom-water methane anomalies and so on. In this study, six key stratigraphic interfaces including T_0(seafloor), T_1(LGM, 23 kyr B.P.), T_2(2.58 Myr), T_3(5.33 Myr), T_4(11.02 Myr) and T_5(16.12 Myr) were identified, and then five third-order sequences of SQIII1 to SQIII5 were divided. However, T5 in southern continental slope is not found, which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene, earlier than the southern segment. Four system tracts including lowstand systems tract(LST), transgressive systems tract(TST), highstand systems tract(HST) and falling stage systems tract(FSST) are further divided. The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P. indicate two large-scale sea level drop events in the research area. Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas, littoral fluvial-delta plains, incised channels or submarine canyons, slope fans, submarine fans or coastal sandbars, littoral-neritic finegrained sediments, mud volcanos and some other geological bodies respectively. The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m, and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m. The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections. The re-depositional turbidite sand bodies, such as canyon channels, slope fans and submarine fans developed in Quaternary strata, are the predominant hydrate reservoirs. According to developing process, the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage, sediments destabilizing and methane leakage stage, and channel filling and hydrate re-occurrence stage.  相似文献   

3.
Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post-fault sequences (Ⅴ, Ⅵ, Ⅶ). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement(4.4 - 5.2 Ma) and Liuhua movement (1.4 - 1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato-tectonic events correlated to the main collision phases between the East China and Taiwan 5 - 3 and 3 - 0 Ma ago.  相似文献   

4.
Using a bottom simulating reflector(BSR) on a seismic profile to identify marine gas hydrate is a traditional seismic exploration method. However, owing to the abundance differences between the gas hydrate and free gas in different regions, the BSR may be unremarkable on the seismic profile and invisible in certain cases. With the improvement of exploration precision, difficulty arises in meeting the requirements of distinguishing the abundance differences in the gas hydrate based on BSR. Hence, we studied other sensitive attributes to ascertain the existence of gas hydrate and its abundance variations, eventually improving the success rate of drilling and productivity. In this paper, we analyzed the contradiction between the seismic profile data and drilling sampling data from the Blake Ridge. We extracted different attributes and performed multi-parameter constraint analysis based on the prestack elastic wave impedance inversion. Then, we compared the analysis results with the drilling sampling data. Eventually, we determined five sensitive attributes that can better indicate the existence of gas hydrate and its abundance variations. This method overcomes the limitations of recognizing the gas hydrate methods based on BSR or single inversion attribute. Moreover, the conclusions can notably improve the identification accuracy of marine gas hydrate and provide excellent reference significance for the recognition of marine gas hydrate. Notably, the different geological features of reservoirs feature different sensitivities to the prestacking attributes when using the prestack elastic inversion in different areas.  相似文献   

5.
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043–1.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes of thermogenic gas. A geological model governing fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes of thermogenic gas eventually contribute to the formation of the gas hydrates.  相似文献   

6.
The large deep-sea area from the southwestern Qiongdongnan Basin to the eastern Dongsha Islands,within the continental margin of northern South China Sea,is a frontier of natural gas hydrate exploration in China.Multiform of deep-sea sedimentations have been occurred since late Miocene,and sediment waves as a potential quality reservoir of natural gas hydrate is an most important style of them.Based on abundant available data of seismic,gravity sampling and drilling core,we analyzed the characteristics of seismic reflection and sedimentation of sediment waves and the occurrence of natural gas hydrate hosted in it,and discussed the control factors on natural gas hydrate accumulation.The former findings revealed the deep sea of the northern South China Sea have superior geological conditions on natural gas hydrate accumulation.Therefore,it will be of great significance in deep-sea natural gas hydrate exploration with the study on the relationship between deep-sea sedimentation and natural gas hydrate accumulation.  相似文献   

7.
Shallow water flow (SWF), a disastrous geohazard in the continental margin, has threatened deepwater drilling operations. Under overpressure conditions, continual flow delivering unconsolidated sands upward in the shallow layer below the seafloor may cause large and long-lasting uncontrolled flows; these flows may lead to control problems and cause well damage and foundation failure. Eruptions from over-pressured sands may result in seafloor craters, mounds, and cracks. Detailed studies of 2D/3D seismic data from a slope basin of the South China Sea (SCS) indicated the potential presence of SWF. It is commonly characterized by lower elastic impedance, a higher Vp/Vs ratio, and a higher Poisson’s ratio than that for the surrounding sediments. Analysis of geological data indicated the SWF zone originated from a deepwater channel system with gas bearing over-pressured fluid flow and a high sedimentation rate. We proposed a fluid flow model for SWF that clearly identifies its stress and pressure changes. The rupture of previous SWF zones caused the fluid flow that occurred in the Baiyun Sag of the northern SCS.  相似文献   

8.
mODUCnONGravityflowsedimentationonthenorthwsterncontinentalsl0PeoftheSOuthChinaSea(SCS)are0fgreatinterestfromthescientificandengineeringP0intofview-Th0roughknOWedgofcontinentalsloPepmeessesanddepositionfeatUresispreregUisiteforhydID-carbenexploraion0fdeepwaerandforprotectionofoffhoredrineeopneeringstrUcbes(PlaifonnsandpiPelines)againstnaedhed.ManykindsofmassmovmentPIDCess-eswerefoUndtobeactiveonthen0rthernSCS(Damuth,l979;l98O).High-freqUency(3.5ffo)echo-chaIaCterInaPPingisawell…  相似文献   

9.
The Dongsha fault- uplifted massif (for convenience . Dongsha massif from here on) is located in the northern continental shelf-slope of the South China Sea, where the water depth is 100-400m. The massif is considered to be a part of the large-scale fault-uplifted zone directed NE and separating the Pearl River Mouth Basin into northern and southern graben areas. The sedimentary cover of the Pearl River Mouth Graben consists mainly of a 7000-10000m thick Tertiary system. A large-scale uplift occurred in the Dongsha fault-uplifted zone during Paleocene-Eocene when the lower structural layer (lower Tertiary) existed only in the small depressions of the fault-uplifted zone. The formation and evolution of the Dongsha fault-uplifted zone could be divided into: 1) the basement formation stage (J2-K1); 2) the slowly uplifted stage (K2-E22); 3) the weathering and erosion stage (E23-E31); 4) the integrated subsidence stage (E32-N12) and 5) the last uplifted stage (N13-Q). The formation of the oil and gas pools o  相似文献   

10.
To investigate the nature of gas hydrates in the Makran area,new high-resolution geophysical data were acquired between 2018-2019.The data collected comprise multibeam and two-dimensional multi-channel seismic reflection data.The multibeam bathymetry data show East-North-East(ENE) ridges,piggy-back basins,canyon and channel systems,and the morphology of the abyssal plain.Continuous and discontinuous bottom simulating reflectors(BSRs) occur in the piggy-back basins on most of the seismic profiles available.The BSRs cut the dipping layers with strong amplitude and reversed polarity.Discontinuous BSRs indicate a transition along a dipping high-permeable sand layers from gas-rich segment to the gas hydrate-bearing segment and sugge st alternating sediments of fine and relatively coarse grain size.Double BSRs are highly dynamic and attributed to slumps occurring in the study area.The BSRs induced by slumps are located both at deep and shallow depths,responding to the temperature or pressure variation.For the first time,BSRs are observed in the abyssal plain of the Makran area,being associated with anticline structures,which do not show large spatial continuity and are strongly conditioned by structural conditions such as anticlines and fluid migration pathways,including deep fault,gas chimney,and high-permeable sedimentary layer.Our results may help to assess the gas hydrate potential within the piggy-back basins and to determine the most promising target areas.Moreover,results about the abyssal plain BSR may help to locate hydrocarbon reservoirs in the deep ocean.  相似文献   

11.
When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.  相似文献   

12.
Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO method is one of the methods which can be used to identify and forecast lithologic characteristics and fluid properties by using the relationship between Amplitude and Offset. AVO anomaly is one of the significant signs to check out whether or not there is free gas below the BSR, so it can be used to detect natural gas hydrates from the seismic profile. Considering the geological and geophysical characteristics of the Okinawa Trough and making use of the techniques mentioned above, we can conclude that the conditions there are favorable for the formation and concentration of natural gas hydrates. By analyzing the data collected from the study area, one can discover many different anomalous phenomena on the seismic profile which are related to the existence of natural gas hydrates. Preliminary estimation of the natural gas hydrates in the Okinawa Trough shows that the trough is rich in natural gas hydrates and may become a potential important resources exploration area.  相似文献   

13.
利用1980~2019年跨断层形变资料,基于断层三维运动模型和改进的灰色关联度方法研究川滇地区主要活动断裂的运动特征及地震危险性。结果表明:1)鲜水河断裂带总体呈左旋拉张运动,并具有明显的分段差异性运动特征;则木河断裂带具有正-逆断阶段性变化特征;滇南和滇西北主要表现为拉张运动。2)断层三维累积活动量与改进的灰色关联度综合指标对断裂附近6级以上地震均具有明显的震前异常及震后趋势转折变化,可能与断裂附近强震孕育-发生、同震及震后调整等影响有关。3)通过分析跨断层综合指标可知,川滇地区需重点关注鲜水河断裂带南东段、则木河断裂带及滇南地区。  相似文献   

14.
通过对172 km的高分辨率浅地层剖面与6个钻孔的综合对比,对丁字湾近岸海底沉积物进行细分,自上而下划分为D0,D1,D2,D3共4个反射界面,SU1,SU2,SU3共3个沉积单元,该文总结了每个沉积单元的埋深、分布及特征,按照各个层序形成时的相对海平面位置及其升降变化态势,划分了海侵、低位、高位3个体系域,分别对应滨海相、陆相、滨海相沉积相。查明了丁字湾近岸浅地层结构及沉积特征,为该区的发展规划、海洋工程建设提供地质依据。  相似文献   

15.
Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slopeparallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slopeparallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.  相似文献   

16.
The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.  相似文献   

17.
18.
随着全球油气勘探的不断深入,北大西洋极地逐渐成为油气勘探研究的前沿领域,而扬马延矿区勘探程度极低。基于中海油冰岛矿区新采集的地震及重磁资料,结合其他有关扬马延微陆块最新的研究资料,开展了扬马延微陆块的地层和构造特征分析,以及与共轭盆地的对比,建立了扬马延火山型被动陆缘远端带的构造演化模式。研究表明:位于北大西洋格陵兰与挪威之间海域的扬马延微陆块,与北大西洋两侧陆架盆地古生代-中生代地层具有共轭特征;构造呈NE-SE向展布,发育拆离断裂体系,与挪威西部陆架盆地中生界拆离断裂体系具有相似性;构造内部受岩浆侵入及喷出等强烈影响,发育向海倾斜反射层(SDR)及岩浆溢流相沉积。在上述研究基础上,探讨了扬马延微陆块与格陵兰古陆和波罗的海古陆拉断分离的构造演化过程,认为扬马延在古生代-中生代与格陵兰古陆和波罗的海古陆为一体,在经历了古生代-中生代陆内碰撞、弱伸展到陆内裂谷和陆内热沉降后,受北大西洋拉开影响,经历了古近纪和新近纪火山型被动陆缘远端带的形成演化过程,在55 Ma第一次洋中脊扩张期,与波罗的海古陆挪威陆缘盆地分离,在25 Ma第二次洋脊跃迁时期,新生洋脊扩张导致扬马延微陆块与格陵兰古陆分离,在沉积与构造上开始与北大西洋火山型被动陆缘盆地产生分异,最终扬马延微陆块成为孤立在洋壳上的一个"弃子"。本次关于扬马延微陆块的研究揭示了火山型被动陆缘远端带在岩浆活动、拆离断裂作用下,减薄-破裂的残余陆壳及内部新生洋壳的构造面貌及板块构造背景下的演化过程。   相似文献   

19.
海底泥底辟(泥火山)与周缘发育的天然气水合物存在着密切的关联,表现在静态要素和动态成藏2个方面。作为一种重要而有效的运移通道类型,泥底辟(泥火山)携带的气体将是天然气水合物的重要气体来源。同时,含气流体沿着泥底辟(泥火山)的上侵,可能会导致上覆地层中温压场和地球化学组分的改变,进而引起天然气水合物稳定带厚度的变化。因此,泥底辟(泥火山)将控制天然气水合物的成藏,如位于构造中心部位的矿物低温热液成藏模式和位于构造边缘的矿物交代成藏模式。另一方面,泥底辟(泥火山)的不同演化阶段将对天然气水合物的形成和富集产生不同的影响。早期阶段,泥底辟(泥火山)形成的运移通道可能并未延伸到天然气水合物稳定带,导致气源供给不够充分;中期阶段,天然气水合物成藏条件匹配良好,利于天然气水合物的生成;晚期阶段,泥火山喷发带来的高热量含气流体引起天然气水合物稳定带的热异常,可能导致天然气水合物的分解,直至泥火山活动平静期,天然气水合物再次成藏。   相似文献   

20.
琼东南盆地南部梅山组具有独特的丘状反射特征,关于其成因机制引起了广泛关注和讨论。以琼东南盆地大量二维地震资料和高分辨率三维地震资料解释为基础,在深水钻井标定下,从地震相特征、沉积物物源、沉积搬运通道、古地貌特征以及海平面变化和构造活动6个方面,阐明了梅山组丘状体的沉积特征,并讨论了其成因机制。研究结果表明,中中新统梅山组沉积时期,受强制性海退影响,琼东南盆地范围内海平面下降至低水位,南部隆起局部暴露剥蚀,提供了大量沉积物源;上中新统黄流组沉积时期,盆地局部构造活动使得南部隆起物源发生重力失稳,通过深水水道向盆地中央以重力流方式搬运沉积物。琼东南盆地梅山组地层的丘状反射特征是黄流组沉积时期以南部隆起沉积物为物源的浊流侵蚀下伏梅山组地层所致。对该丘状体成因机制的深入研究,不但有助于丰富对丘状地震反射现象的认识,而且揭示了其沉积构成为粗碎屑沉积物而非生物礁滩沉积,对深水油气勘探储层特征及评价具有重要意义。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号