首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the processes by which sediment is transported through a submarine canyon incised in a continental margin affected by recurrent dense shelf water cascading events, several instrumented moorings were deployed in the Cap de Creus Canyon from September 2004 to September 2005. This was done as part of the EuroSTRATAFORM Program that investigated sediment transport and accumulation processes in the Gulf of Lions. Results obtained in this observational study confirm that major cascading events can effectively contribute to the rapid export of sediment from the shelf and upper slope to deeper environments, and suggest that the associated strong currents carrying coarse particles are able to erode the canyon floor and generate sedimentary furrows. During winter 2004–2005, persistent northerly winds and the absence of river floods contributed to decrease the buoyancy of coastal waters and to dramatically enhance the intensity of dense shelf water cascades in the Gulf of Lions. Under such conditions, cascading continuously affected the entire Cap de Creus upper canyon section for more than a month and sustained cold temperatures and down-canyon steady currents >60 cm/s (up to 100 cm/s), showing periodic fluctuations that lasted between 3 and 6 days. Increases in suspended sediment concentrations were associated with dense shelf water cascading outbursts, but the magnitude of the concentration peaks decreased with time, suggesting a progressive exhaustion of the resuspendable sediments from the shelf and canyon floor. Grain size analyses of the particles caught by a near-bottom sediment trap show that dense shelf water cascades are able to transport coarse sediments (up to 65% sand) in suspension (and presumably as bed load), which have the potential to abrade the seafloor and generate erosive bed forms. The orientation of a large field of “wide” (i.e., widths about 1/2 spacing indicative of erosive formation) sedimentary furrows recently observed in the Cap de Creus Canyon clearly coincides with the preferential direction of highest velocities measured by the moored current meters, indicating a causative relationship between contemporary dense shelf water cascades and furrow formation.  相似文献   

2.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   

3.
In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment concentration measurements collected at the head of seven submarine canyons and at a shallow shelf site, over a 6-month period (November 2003–May 2004). The comparisons provide a reasonable validation of the model that reproduces the observed spatial and time variations. The study period was marked by an unusual occurrence of marine storms and high river inputs. The major water and sediment discharges were supplied by the Rhone, the largest Mediterranean river, during an exceptional flood accompanying a severe marine storm in early December 2003. A second major storm, with moderate flooding, occurred in February 2004. The estimate of river input during the studied period was 5.9 Mt. Our study reveals (i) that most of the particulate matter delivered by the Rhone was entrapped on the prodelta, and (ii) that marine storms played a crucial role on the sediment dispersal on the shelf and the off-shelf export. The marine storms occurring in early December 2003 and late February 2004 resuspended a very large amount of shelf sediment (>8 Mt). Erosion was controlled by waves on the inner shelf and by energetic currents on the outer shelf. Sediment deposition took place in the middle part of the shelf, between 50 and 100 m depth. Resuspended sediments and river-borne particles were transported to the southwestern end of the shelf by a cyclonic circulation induced by these onshore winds and exported towards the Catalan shelf and into the Cap de Creus Canyon which incises the slope close to the shore. Export taking place mostly during marine storms was estimated to reach 9.1 Mt during the study period.  相似文献   

4.
Previous work in the Gulf of Lions (western Mediterranean Sea) has suggested that significant amounts of sediment escape through the western part of this tectonically passive margin, despite it being far removed from the primary sediment source (the Rhone River, ∼160 km to the NE). The primary mechanism behind this export is hypothesized to be the interaction of a regional, southwestward sediment-transport path with a canyon deeply incising the southwestern part of the shelf, Cap de Creus Canyon.  相似文献   

5.
Shelf-to-canyon suspended sediment transport during major storms was studied at the southwestern end of the Gulf of Lions. Waves, near-bottom currents, temperature and water turbidity were measured on the inner shelf at 28-m water depth and in the Cap de Creus submarine canyon head at 300 m depth from November 2003 to March 2004. Two major storm events producing waves Hs>6 m coming from the E–SE sector took place, the first on 3–4 December 2003 (max Hs: 8.4 m) and the second on 20–22 February 2004 (max Hs: 7 m). During these events, shelf water flowed downcanyon producing strong near-bottom currents on the canyon head due to storm-induced downwelling, which was enhanced by dense shelf water cascading in February 2004. These processes generated different pulses of downcanyon suspended sediment transport. During the peak of both storms, the highest waves and the increasing near-bottom currents resuspended sediment on the canyon head and the adjacent outer shelf causing the first downcanyon sediment transport pulses. The December event ended just after these first pulses, when the induced downwelling finished suddenly due to restoration of shelf water stratification. This event was too short to allow the sediment resuspended on the shallow shelf to reach the canyon head. In contrast, the February event, reinforced by dense shelf water cascading, was long enough to transfer resuspended sediment from shallow shelf areas to the canyon head in two different pulses at the end of the event. The downcanyon transport during these last two pulses was one order of magnitude higher than those during the December event and during the first pulses of the February event and accounted for more than half of the total downcanyon sediment transport during the fall 2003 and winter 2004 period. Major storm events, especially during winter vertical mixing periods, produce major episodes of shelf-to-canyon sediment transport at the southwestern end of the Gulf of Lions. Hydrographic structure and storm duration are important factors controlling off-shelf sediment transport during these events.  相似文献   

6.
A 1-year survey of sediment dynamics on the Têt inner-shelf in the south-western part of the Gulf of Lions was conducted as part of the EUROSTRATAFORM program (European Margin Strata Formation) from October 2004 to November 2005. Several bottom instruments (ADCP, wave gauge and altimeters) were deployed at 28 m water depth on the Têt prodelta to measure forcing responsible for sediment erosion and transport on the inner-shelf.  相似文献   

7.
To investigate the role of coastal canyons in the transfer of organic matter from the shelf to the slope and basin, we deployed sediment trap/current meter pairs at the head of five canyons in the Gulf of Lions (GoL) between November 2003 and May 2004. Analysis of organic carbon, biogenic silica, Corg isotopic composition, Corg/total nitrogen, chloropigments, and amino acids clearly shows the seasonal influence and effect of extreme meteorological events on the composition of collected particles. The sampling period was divided into three “scenarios”. The first corresponded to a large easterly storm and flood of the Rhone river during stratified water column conditions; the composition of material collected during this event was influenced by increased transfer of riverine and coastal particulate matter, with a lower Corg content. During the second “fall-winter” scenario, northern and northwestern winds blowing over the shelf caused cooling and homogenization of the shelf water column; particles collected at this time reflected the homogeneous source of particulate matter transported through canyons; particles sitting in the vicinity of canyon heads are most likely swept downslope by the general south-westward circulation. Organic tracers indicate a degraded origin for organic matter transported during this period. A third “spring” scenario corresponded to northern winds alternating with eastward windstorms that triggered and/or enhanced the cascading of dense waters accumulated on the bottom of the shelf due to previous cooling. These conditions occurred in conjunction with increased phytoplankton productivity in shelf surface waters. Organic matter advected mainly by dense shelf water cascading was fresher due to the transport of newly produced particles and a variable terrestrial fraction; this fraction depended on the proportion of resuspended material accumulated during previous high discharge periods that was involved in each transport pulse. The tight link shown between meteorological conditions and organic matter transport is important for continental margin geochemical studies as future changes in climatic conditions may lead to dramatic changes in carbon sequestration capability and in the ecosystems of deep margin environments.  相似文献   

8.
Dense water formed over the continental shelf and cascading down the slope is responsible for shelf-slope exchanges in many parts of the world ocean, and transports large amounts of sediment and organic matter into the deep ocean. Here we perform numerical modeling experiments to investigate the impact of atmospheric interannual variability and climate change on dense water formation over the Gulf of Lions shelf, in the Northwestern Mediterranean Sea. Results obtained for a 140 years eddy-permitting simulation (1960–2100) performed over the whole Mediterranean Sea under IPCC A2 scenario forcings are used to force a regional eddy-resolving model of the Northwestern Mediterranean Sea.  相似文献   

9.
Simulations of both currents and waves were performed throughout the year 2001 to assess the relative contribution of each to their overall erosive potential on the Gulf of Lions shelf. Statistical analysis of bottom shear stress (BSS) was compared to sediment grain-size distribution on the bottom. The hydrodynamic features of the bottom layer coincide with the distribution of surficial sediments, and three areas with different hydro-sedimentary characteristics were revealed. (i) The sandy inner shelf (<30 m) area is a high-energy-wave dominated area but may be subjected to intense current-induced BSS during on-shore winds along the coast and during continental winds mainly in the up-welling cells. (ii) The middle shelf (30–100 m) is a low-energy environment characterised by deposition of cohesive sediments, where the wave effect decreases with depth and current-induced BSS cannot reach the critical value for erosion of fine-grained sediments. (iii) The outer shelf, which has a higher bottom sand fraction than the middle shelf, may be affected by strong south-westward currents generated by on-shore winds, which can have an erosive effect on the fine-grained sediments.  相似文献   

10.
Several studies have provided evidence for the enrichment of trace elements in coastal waters, particularly for copper. These enrichments have been attributed to diffusion from continental shelf sediments and to an influx of river water. We attempted to resolve between these sources by undertaking an extensive suite of measurements of trace metals (Cu, Ni, Cd), 226Ra and 228Ra in the surface waters of the Gulf of Mexico, along with trace metal profiles at 6 stations (April 1981 and December 1982). These data establish that enrichments of copper, nickel and cadmium occur in the shallow waters of the Gulf of Mexico. On the Mississippi continental shelf, high trace element concentrations (Cu, Ni: ~ 9 nmol/kg; Cd: ~ 200 pmol/kg) in lower-salinity waters (26‰) are similar to those observed in the Mississippi plume at the same salinity. This evidence suggests a river water source. On the other hand, trace element enrichments are also observed in the northern Gulf (Cu: +0.4 nmol/kg; Ni: +0.5 nmol/kg; Cd: +20 pmol/kg) which coincide with an increase in 228Ra but are not accompanied by decreased salinity. The excess of evaporation over precipitation in this region makes it possible that this water could be evaporated estuarine water; therefore, hydrographic observations cannot distinguish readily between river and shelf sources. A regional flux balance shows that most of the excess copper in the surface waters of the Florida Current can be supplied by the river-borne dissolved copper flux. Within the uncertainties of such calculations, the continental shelf copper flux must be less than or equal to the river flux.  相似文献   

11.
A study of sediments in the Gulf of Mexico shows dramatic gradients in Pu content and isotope ratios from the continental shelf to the Sigsbee Abyssal Plain. In terms of predicted direct fallout inventory of Pu, one shelf core contains 745% of the predicted inventory, while abyssal plain sediments contain only 15–20% of the predicted value. Absolute Pu concentrations of shelf sediments are also conspicuously high, up to 110 dpm/kg, compared to 13.5 dpm/kg in Mississippi River suspended sediment. There is no evidence of Pu remobilization in Gulf of Mexico shelf sediments, based on comparison of Pu profiles with Mn/Al and Fe/Al profiles. Horizontal transport of fallout nuclides from the open ocean to removal sites in ocean margin sediments is concluded to be the source of both the high concentrations and high inventories of Pu reported here.The shelf sediments show240Pu/239Pu ratios close to 0.179, the average stratospheric fallout value, but the ratios decrease progressively across the Gulf to low values of 0.06 in abyssal plain sediments. The source of low-ratio Pu in deep-water sediments may be debris from low yield tests transported in the troposphere. Alternatively, it may represent a fraction of the Pu from global stratospheric fallout which has been separated in the water column from the remainder of the Pu in the ocean. In either case, the low-ratio material must have been removed rapidly to the sea floor where it composes a major fraction of the Pu in abyssal plain sediments. Pu delivered by global atmospheric fallout from the stratosphere has apparently remained for the most part in the water or has been transported horizontally and removed into shallow-water sediments.  相似文献   

12.
In this study, we measured and analyzed polycyclic aromatic hydrocarbons (PAHs) in surface sediment samples collected from the Kaoping river and submarine canyon (KPSC) system to determine the compositional patterns and characteristic distributions of PAH and to elucidate the transport and fate of these land-derived particles. Concentrations of total PAH (sum of 28 PAH compounds) ranged from 22.6 to 45,100 ngg(-1) dry weight (dw) and the highest concentrations were found in the sediments of Donggang Harbor. The ratio of perylene to sum of penta-aromatic PAH isomers (47-55%) was higher in off-shore stations, suggesting a diagenetic PAH source. Various isomeric ratios also indicated that combustion was a significant source of PAH to the sediment at stations located along the Kaoping river and the north-western shelf of the Kaoping estuary. However, in the south-eastern shelf and some canyon sites, petroleum-derived PAHs were a more significant source of these compounds. Principal component analysis and hierarchical cluster analysis suggest PAHs in the sediments from the north-western shelf, and river and canyon sediments might be a pyrogenic product of coal and diesel-burning vehicles, while those of the south-eastern shelf may be petrogenic. PAH concentrations and compositional patterns are effective tracers of particulate transport in KPSC system. The seaward transport of riverine particulates was found to be mostly directed to NW-shelf and/or canyon.  相似文献   

13.
Faecal indicator bacteria (thermotolerant coliform and faecal streptococci) were enumerated in a Mediterranean coastal river to evaluate bacterial contamination levels in relation to hydrological conditions, to estimate delivery of bacterial loads to transitional and coastal waters (Thau lagoon) and to identify bacterial sources of pollution and their contribution to the bacterial flow. Results showed that (1) in low flow conditions, mean bacterial concentrations were higher than EU guidelines for bathing waters; (2) floods had higher concentrations of indicator bacteria than low flows; (3) low flow conditions represented a negligible proportion of bacterial loads compared with high flow and flood periods; (4) during medium and low flow conditions, bacteria were stored in riverbed fine sediments forming in‐stream stores that may be flushed during floods; (5) the first flush effect was highlighted during an early autumn flood as was the role of in‐stream stores during the course of the flood; and (6) point sources that continuously feed the river are contributing to the pool of bacteria accumulated in the riverbed sediment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In order to assess the impact of natural and anthropogenic sediment resuspension on quantity, biochemical composition and bioavailability of particulate organic matter (POM), two field investigations were carried out in two shallow coastal areas of the Mediterranean Sea. In the Gulf of Lions, we investigated the impact of a storm resuspension of sediment, whereas in the Thermaikos Gulf we investigated the impact of bottom trawling.Resuspension in the Gulf of Lions determined the increase of sedimentation rates, modified the composition of the organic fraction of settling particles and decreased the labile fraction of POM, as indicated by a drop in the enzymatically hydrolysable amino acid fraction. The increase in the refractory fraction, following short-term storm-induced resuspension, increased also the contribution of glycine and decreased the contribution of aspartic acid contents to the total amino acid pools.Trawling activities in Thermaikos Gulf determined a significant increase in suspended POM concentrations and important changes in its biochemical composition. After trawling, the protein to carbohydrate ratio decreased (as a result of a major input of sedimentary carbohydrates at the water–sediment interface) and the fraction of enzymatically hydrolysable biopolymeric C decreased by ≈30%, thus reducing the bioavailability of resuspended organic particles. Results of the present study indicate that changes in suspended POM, induced by storms and trawling activities, can have similar consequences on benthic systems and on food webs. In fact, the potential benefit of increased organic particle concentration for suspension feeders, is depressed by the shift of suspended food particles towards a more refractory composition.  相似文献   

15.
At a regional scale, high-resolution seismic dataset analysis provides an accurate image of the stratigraphic organization of the Post-Glacial transgressive deposits of the Gulf of Lions inner-shelf. Architectural and stratigraphic characteristics are different in four main sectors, clearly demonstrating that depositional models have to be adapted from place to place following the interplay of various genetic factors.  相似文献   

16.
210Pb is widely used for dating recent sediments in the aquatic environment; however, our experiences working in shallow coastal environments in the Pacific coast of Mexico have demonstrated that the potential of 210Pb for reliable historical reconstructions might be limited by the low 210Pb atmospheric fallout, sediment mixing, abundance of coarse sediments and the lack of 137Cs signal for 210Pb corroboration. This work discusses the difficulties in obtaining adequate sedimentary records for geochronological reconstruction in such active and complex settings, including examples of 210Pb geochronologies based on sediment profiles collected in two contrasting areas coastal areas (mudflats associated to coastal lagoons of Sinaloa State and the continental shelf of the Gulf of Tehuantepec), in which geochemical data was used to support the temporal frame established and the changes in sediment supply recorded in the sediment cores which were related to the development of land-based activities during the last century.  相似文献   

17.
A chain of three nested models, based on the MARS 3D code, is used to simulate the North-western Mediterranean Sea circulation with a finest grid of 1.2 km resolution and 30 vertical sigma levels. This modelling system allows to resolve the coastal dynamics taking into account the influence of the general basin circulation. The aim of this study is to assess the ability of the nested MARS-3D models to reproduce most of the circulation features observed in the North-western Mediterranean Basin and in the Gulf of Lions. Comparisons of modelled sea surface temperature and salinity with MEDAR/MEDATLAS climatology and NOAA/AVHRR satellite measurements show that the model accurately reproduces the large and coastal scale variability. Over the Northern Basin, the seasonal changes of the cyclonic gyre extension are correctly simulated, even though in summer, the modelled temperature of the surface layer remains in basin-average 1°C cooler than the satellite measured temperature. As soon as the stratification erodes, modelled and observed temperatures become closer. Over the Gulf of Lions, realistic coastal responses are obtained under different wind conditions. Upwellings are correctly located and their intensity and spatial extension were here improved by the use of Aladin wind fields (10 km spatial resolution) and the introduction of a drag coefficient fitted according to the stability of the planetary boundary layer. The dispersion of fresh Rhone water discharge and the mesoscale circulation simulated by MARS-3D also agree with satellite measurements.  相似文献   

18.
In the framework of the European project Eurostrataform, an array of six near-bottom mooring lines was deployed in the heads of the major submarine canyons incising the continental slope of the Gulf of Lions (NW Mediterranean). All moorings were equipped with sediment traps, current meters and turbidity Optical Backscatters Sensors (OBS) situated at few meters above the bottom. Particulate mass fluxes were recorded weekly by the sediment traps between November 2003 and May 2004 and compared with horizontal export fluxes obtained from the turbidity and current meters.  相似文献   

19.
This paper investigates the development of flood hazard and flood risk delineations that account for uncertainty as improvements to standard floodplain maps for coastal watersheds. Current regulatory floodplain maps for the Gulf Coastal United States present 1% flood hazards as polygon features developed using deterministic, steady‐state models that do not consider data uncertainty or natural variability of input parameters. Using the techniques presented here, a standard binary deterministic floodplain delineation is replaced with a flood inundation map showing the underlying flood hazard structure. Additionally, the hazard uncertainty is further transformed to show flood risk as a spatially distributed probable flood depth using concepts familiar to practicing engineers and software tools accepted and understood by regulators. A case study of the proposed hazard and risk assessment methodology is presented for a Gulf Coast watershed, which suggests that storm duration and stage boundary conditions are important variable parameters, whereas rainfall distribution, storm movement, and roughness coefficients contribute less variability. The floodplain with uncertainty for this coastal watershed showed the highest variability in the tidally influenced reaches and showed little variability in the inland riverine reaches. Additionally, comparison of flood hazard maps to flood risk maps shows that they are not directly correlated, as areas of high hazard do not always represent high risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The Gulf of Aigues-Mortes (NW Mediterranean Sea) is a midshelf zone whose scale is an intermediate between the nearshore scale (0–10 m depth) and the coastal scale (including the whole continental shelf). Its hydrodynamics is investigated for the first time. ADCP, CTD and thermosalinograph data were collected during three short cruises (HYGAM; March 6–7, 20–21, April 5–6, 2005). They were scheduled approximately every 15 days to sample the gulf circulation under different weather conditions. Moreover, the cruise data were used to validate the Symphonie model, a 3D primitive equations circulation model. The circulation features displayed by in situ data were well reproduced by Symphonie. A downscaling modelling approach was implemented, the largest scale being obtained by the replay of the MFSTEP regional model of the North-Western Mediterranean Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号