首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution multibeam swath-bathymetry and sediment samples were collected across the outer shelf region of the Columbretes Islands (southern Ebro continental shelf, western Mediterranean Sea). Bathymetric data from the submerged part of the Columbretes volcanic system revealed the presence of three main relict sand bodies along the outer shelf, at 80–116 m depth range, above which asymmetric and slightly asymmetric large and very large 2D and 3D subaqueous dunes were observed. These bed features were recognized, mapped and quantified with the aim of evaluating their potential formation mechanisms in relation to the local hydrodynamic and morphologic settings of the area. Dunes range from 150 to 760 m in wavelength and from tens of centimeters to 3 m in height, and are among the longest ever recognized in an outer shelf region. These bedforms are mostly composed of medium-sized sandy sediments, presumably coming from the degraded relict sand bodies on top of which they have developed, mixed with fine fractions from the recent draping holocenic sediments. The orientation of the dunes is SSW, progressively turning W towards the southernmost sector of the area, following the trend of the shelf-edge. Contemporary hydrodynamic measurements at the Ebro continental shelf-edge show that recorded currents are insufficient to form the observed bedforms and that stronger currents are required for sediment mobilization and dune formation. Based on their morphology and orientation, it is proposed that these bedforms are produced by the action of the southward-flowing Liguro-Provençal-Catalan (LPC) geostrophic current. The LPC probably reaches high near-bottom currents during energetic hydrodynamic events through interactions with the seafloor morphology of the study area. Subaqueous dunes are expected to be basically inactive features with respect to present-day processes, although they can be reactivated during high-energy events. The small Δh/λ ratio measured in the dune fields of the Columbretes shelf revealed that the dune heights fall below the values predicted by the Flemming (1988) global equation, as observed in other outer shelf settings also dominated by unidirectional flows. This may suggest a different morphodynamic character of large dunes formed on outer shelves in a micro-tidal regime.  相似文献   

2.
In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment concentration measurements collected at the head of seven submarine canyons and at a shallow shelf site, over a 6-month period (November 2003–May 2004). The comparisons provide a reasonable validation of the model that reproduces the observed spatial and time variations. The study period was marked by an unusual occurrence of marine storms and high river inputs. The major water and sediment discharges were supplied by the Rhone, the largest Mediterranean river, during an exceptional flood accompanying a severe marine storm in early December 2003. A second major storm, with moderate flooding, occurred in February 2004. The estimate of river input during the studied period was 5.9 Mt. Our study reveals (i) that most of the particulate matter delivered by the Rhone was entrapped on the prodelta, and (ii) that marine storms played a crucial role on the sediment dispersal on the shelf and the off-shelf export. The marine storms occurring in early December 2003 and late February 2004 resuspended a very large amount of shelf sediment (>8 Mt). Erosion was controlled by waves on the inner shelf and by energetic currents on the outer shelf. Sediment deposition took place in the middle part of the shelf, between 50 and 100 m depth. Resuspended sediments and river-borne particles were transported to the southwestern end of the shelf by a cyclonic circulation induced by these onshore winds and exported towards the Catalan shelf and into the Cap de Creus Canyon which incises the slope close to the shore. Export taking place mostly during marine storms was estimated to reach 9.1 Mt during the study period.  相似文献   

3.
Shelf-to-canyon suspended sediment transport during major storms was studied at the southwestern end of the Gulf of Lions. Waves, near-bottom currents, temperature and water turbidity were measured on the inner shelf at 28-m water depth and in the Cap de Creus submarine canyon head at 300 m depth from November 2003 to March 2004. Two major storm events producing waves Hs>6 m coming from the E–SE sector took place, the first on 3–4 December 2003 (max Hs: 8.4 m) and the second on 20–22 February 2004 (max Hs: 7 m). During these events, shelf water flowed downcanyon producing strong near-bottom currents on the canyon head due to storm-induced downwelling, which was enhanced by dense shelf water cascading in February 2004. These processes generated different pulses of downcanyon suspended sediment transport. During the peak of both storms, the highest waves and the increasing near-bottom currents resuspended sediment on the canyon head and the adjacent outer shelf causing the first downcanyon sediment transport pulses. The December event ended just after these first pulses, when the induced downwelling finished suddenly due to restoration of shelf water stratification. This event was too short to allow the sediment resuspended on the shallow shelf to reach the canyon head. In contrast, the February event, reinforced by dense shelf water cascading, was long enough to transfer resuspended sediment from shallow shelf areas to the canyon head in two different pulses at the end of the event. The downcanyon transport during these last two pulses was one order of magnitude higher than those during the December event and during the first pulses of the February event and accounted for more than half of the total downcanyon sediment transport during the fall 2003 and winter 2004 period. Major storm events, especially during winter vertical mixing periods, produce major episodes of shelf-to-canyon sediment transport at the southwestern end of the Gulf of Lions. Hydrographic structure and storm duration are important factors controlling off-shelf sediment transport during these events.  相似文献   

4.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

5.
Multibeam bathymetry acquired under the MAREANO programme from the continental shelf off Nordland and Troms, northern Norway, show bedforms that we have interpreted as rippled scour depressions. They occur in three areas offshore on bank slopes facing southeast, more than 15 km from land. They are generally found where the slope gradient is low, in water depths of 70–160 m. Individual depressions are up to 3 km long, 1 m deep and up to 300 m wide. They occur in areas where sediments evolve quickly from glacial deposits on the banks to post-glacial muddy sediments on the glacial troughs. Multibeam backscatter and underwater video data show that depression floors are covered by rippled, gravelly, shelly sand. Ripple crests are parallel or slightly oblique to the depression axis orientation. Sand without bedforms is observed between the depressions. TOPAS seismic lines show that the uppermost seismic unit consists of the sand between the depressions. The base of this unit may be the last transgressive/tidal/wave ravinement surface. Physical oceanographic modelling indicates that maximum current velocities are up to 0.6 m/s in the rippled scour depression areas. Stronger currents appear to inhibit the building of these features. Tidal currents play an important role as they trend parallel to the southeast banks slopes and are likely responsible of the gravelly ripples formation inside the depressions as well as the persistence of these depressions which are not covered by finer sediments. On Malangsgrunnen bank, some of the rippled scour depressions are in the extension of NW–SE furrows located on the bank. Simulated bottom currents indicate currents mainly perpendicular to these furrows, as for the rippled scour depressions on the bank slopes. Nevertheless, these features could also highlight currents coming from the northwest which reach the bank margin and continue down to the areas of the rippled scour depressions. These currents could be responsible for the formation of some of the bedforms, together with tidal currents.  相似文献   

6.
We examined spatial variations in benthic remineralisation (measured as sediment oxygen consumption (SOC)) and sediment properties on the northeastern New Zealand continental shelf and slope to assess the importance of benthic mineralisation in this ecosystem and to provide data for more complete global carbon budgets. SOC measured in dark incubations conducted in early summer ranged from 128 μmol m−2 h−1 at the deepest (360 m) to 1222 μmol m−2 h−1 at the shallowest (4.2 m) site and decreased significantly with water depth (p<0.001, r2=0.78, SOC=1222.8−456.3×log10[water depth], n=14 sites). These rates were in the range found on continental shelves elsewhere (64–1750 μmol m−2 h−1, n=30 studies) and had a very similar distribution with water depth. SOC was also measured in light incubations at seven sites (4.2–35 m water depth) to examine the effects of microphytobenthos and accounted for 42–106% of rates measured in the dark. Measurements of near-bed light intensities suggested that microphytobenthos production was not solely regulated by light intensity but evidently influenced by other factors. A two-dimensional PCA ordination of surface sediment properties accounted for 83.3% of the total variance in the data and divided the study area into three clusters that corresponded well to its spatial division into the shallow (<30 m) Firth of Thames, the Hauraki Gulf (30–50 m) and the northern shelf-slope region. In the Firth of Thames sediments were very fine-grained with low CaCO3 and high total organic matter and pigment content, and low C:N ratios. The northern shelf-slope sediments showed the opposite trends to the Firth of Thames and those in the Hauraki Gulf had mostly intermediate values. Dark SOC was significantly correlated with sediment organic matter, carbon, nitrogen, pigments and silt/clay content (p<0.05, r=0.55–0.85) but a multiple linear regression revealed that water depth was the only significant predictor. Calculations suggest that approximately 13%, 10% and 34% of primary production is remineralised in the sediments of the northern shelf-slope region, Hauraki Gulf and Firth of Thames, respectively, indicating a strong benthic–pelagic coupling on the northeastern New Zealand continental shelf that was particularly pronounced in the Firth of Thames due to its shallow depth and significant terrestrial and riverine inputs.  相似文献   

7.
Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature–salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m−1 yr−1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ∼0.2 mm yr−1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (∼5 mm yr−1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.  相似文献   

8.
Tidal current and elevation data were collected from five oceanographic moorings during October 2004 in Torres Strait, northern Australia, to assess the effects of large bedforms (i.e., sand banks) on the drag coefficient (CD) used for estimating bed shear stress in complex shallow shelf environments. Ten minute averages of tidal current speed and elevation data were collected for 18 days at an on-bank site (<7 m water depth) and an off-bank site (<10 m). These data were compared to data collected simultaneously from two shelf locations (<11 m) occupied to measure regional tidal behaviour. Overall CD estimates at the on- and off-bank sites attained 7.0±0.1×10−3 and 6.6±0.1×10−3, respectively. On-bank CD estimates also differed between the predominant east–west tidal streams, with easterly directed flows experiencing CD=7.8±0.18×10−3 and westerly directed flows CD=6.4±0.12×10−3. Statistically significant differences between the off-bank and on-bank sites are attributed to the large form drag exerted by the sand banks on the regional tidal currents, and statistically significant differences between the westward and eastward flows is ascribed to bedform asymmetry. Form drag from the large bedforms in Torres Strait comprises up to 65% of the total drag coefficient. When constructing sediment transport models, different CD estimates must therefore be applied to shelf regions containing steep bedforms compared to regions that do not. Our results extend the limited inventory of seabed drag coefficients for shallow shelf environments, and can be used to improve existing regional seabed mobilisation models, which have direct application to environmental management in Torres Strait.  相似文献   

9.
The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.  相似文献   

10.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water.  相似文献   

11.
Global eustatic lowstands can expose vast areas of continental shelves, and occasionally the shelf edge and the continental slope. The degree of fluvial connectivity to receding shores influences the redistribution of sediments across these emerging landscapes. Shelf and slope emergence in the Dead Sea since the middle of the 20th century, offers a rare opportunity to examine evolution of stream connectivity in response to continuous base-level decline. We characterize the connectivity evolution of two streams, using high-resolution time series of aerial imagery and elevation models, field mapping, and grain-size analyses. Our rich spatiotemporal dataset of evolving channel geomorphology, sediment transport conditions, and sediment redistribution, allows calculating potential coarse sediment mobility in response to base level decline. Following shelf emergence, alluvial fans first prograded onto the low-gradient shelf under unfavourable conditions for transporting coarse sediment to the regressing shoreline. Then, with shelf and slope emergence, the two adjacent streams evolved differently. The smaller, more arid watershed still maintains its highstand delta progradation on the shelf and is practically disconnected from the receding lake. The larger catchment, heading in wetter environments and having a narrower shelf, has incised the shelf and renewed and gradually intensified the sediment transport from the highstand to the lowstand delta. Sediment mobilization to lowstand shorelines is controlled by the evolution of the channel profile and by the average speed of gravel transport (10s-100s m yr-1). These findings from the Dead Sea are relevant to fluvial processes operating on continental shelves during glacial maxima. Streams would have commonly stored high proportions of their coarse sediment on the continental shelves rather than efficiently connecting with the lowstand level. Additionally, differences in sediment routing patterns should exist among nearby streams, primarily due to continental margin geometry and watershed hydrology. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
We examined the occurrence of seasonal hypoxia (O2<2 mg l−1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1–10 g C m−2 d−1), and lower off the Rhône River (<1 g C m−2 d−1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia.  相似文献   

13.
To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited ∼10 cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04 M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.  相似文献   

14.
Marine sediment may contain both settled phytoplankton and benthic microalgae (BMA). In river-dominated, shallow continental shelf systems, spatial, and temporal heterogeneity in sediment type and water-column characteristics (e.g., turbidity and primary productivity) may promote spatial variation in the relative contribution of these two sources to the sediment organic matter pool available to benthic consumers. Here we use photosynthetic pigment analysis and microscopic examination of sediment microalgae to investigate how the biomass, composition, and degradation state of sediment-associated microalgae vary along the Louisiana (USA) inner shelf, a region strongly influenced by the Mississippi River. Three sandy shoals and surrounding muddy sediments with depths ranging from 4 to 20 m were sampled in April, August, and October 2007. Pigment composition suggested that sediment microalgae were primarily diatoms at all locations. We found no significant differences in sediment chlorophyll a concentrations (8–77 mg m−2) at the shoal and off-shoal stations. Epipelic pennate diatoms (considered indicative of BMA) made up a significantly greater proportion of sediment diatoms at sandy (50–98%) compared to more silty off-shoal stations (16–56%). The percentage of centric diatoms (indicators of settled phytoplankton) in the sediment was highest in August. Sediment total pheopigment concentrations on sandy stations (<20 mg m−2) were significantly lower than concentrations at nearby muddy stations (>40 mg m−2), suggesting differences in sediment microalgal degradation state. These observations suggest that BMA predominate in shallow sandy sediments and that phytodetritus predominates at muddy stations. Our results also suggest that the relative proportion of phytodetritus in the benthos was highest where phytoplankton biomass in the overlying water was greatest, independent of sediment type. The high biomass of BMA found on shoals suggests that benthic primary production on sandy sediments represents a potentially significant local source of sediment microalgal carbon that may be utilized by benthic consumers in continental shelf food webs.  相似文献   

15.
To investigate the processes by which sediment is transported through a submarine canyon incised in a continental margin affected by recurrent dense shelf water cascading events, several instrumented moorings were deployed in the Cap de Creus Canyon from September 2004 to September 2005. This was done as part of the EuroSTRATAFORM Program that investigated sediment transport and accumulation processes in the Gulf of Lions. Results obtained in this observational study confirm that major cascading events can effectively contribute to the rapid export of sediment from the shelf and upper slope to deeper environments, and suggest that the associated strong currents carrying coarse particles are able to erode the canyon floor and generate sedimentary furrows. During winter 2004–2005, persistent northerly winds and the absence of river floods contributed to decrease the buoyancy of coastal waters and to dramatically enhance the intensity of dense shelf water cascades in the Gulf of Lions. Under such conditions, cascading continuously affected the entire Cap de Creus upper canyon section for more than a month and sustained cold temperatures and down-canyon steady currents >60 cm/s (up to 100 cm/s), showing periodic fluctuations that lasted between 3 and 6 days. Increases in suspended sediment concentrations were associated with dense shelf water cascading outbursts, but the magnitude of the concentration peaks decreased with time, suggesting a progressive exhaustion of the resuspendable sediments from the shelf and canyon floor. Grain size analyses of the particles caught by a near-bottom sediment trap show that dense shelf water cascades are able to transport coarse sediments (up to 65% sand) in suspension (and presumably as bed load), which have the potential to abrade the seafloor and generate erosive bed forms. The orientation of a large field of “wide” (i.e., widths about 1/2 spacing indicative of erosive formation) sedimentary furrows recently observed in the Cap de Creus Canyon clearly coincides with the preferential direction of highest velocities measured by the moored current meters, indicating a causative relationship between contemporary dense shelf water cascades and furrow formation.  相似文献   

16.
The purpose of the present study is to investigate experimentally the development of bedforms in a configuration where the sediment supply is limited. The experimental setup is a rectangular closed duct combining an innovative system to control the rate of sediment supply Qin , and a digitizing system to measure in real time the 3D bedform topography. We carried out different sets of experiments with two sediment sizes (100 µm and 500 µm) varying both the sediment supply and the water flow rate to obtain a total of 46 different configurations. After a transient phase, steady sub‐centimeter bedforms of various shapes have been observed: barchans dunes, straight transverse dune, linguoid transverse dunes and bedload sheets. Height, spacing, migration speed, and mean bed elevation of the equilibrium bedforms were measured. For a given flow rate, two regimes were identified with fine sediment: (i) a monotonic increasing regime where the equilibrium bedform height and velocity increase with the sediment supply rate Qin and (ii) an invariant regime for which both parameters are almost independent of Qin. For coarse sediment, only the first regime is observed. We interpret the saturation of height and velocity for fine sediment bedforms as the transition from a supply‐limited regime to a transport‐limited regime in which the bedload flux has reached its maximum value under the prevailing flow conditions. We also demonstrate that all experiments can be rescaled if the migration speed and height of the bedforms are, respectively, divided and multiplied by the cube of the shear velocity. This normalization is independent of grain size and of bedform morphology. These experimental results provide a new quantification of the factors controlling equilibrium height and migration speed of bedforms in supply‐limited conditions against which theoretical and numerical models can be tested.  相似文献   

17.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   

18.
The Gulf of Aigues-Mortes (NW Mediterranean Sea) is a midshelf zone whose scale is an intermediate between the nearshore scale (0–10 m depth) and the coastal scale (including the whole continental shelf). Its hydrodynamics is investigated for the first time. ADCP, CTD and thermosalinograph data were collected during three short cruises (HYGAM; March 6–7, 20–21, April 5–6, 2005). They were scheduled approximately every 15 days to sample the gulf circulation under different weather conditions. Moreover, the cruise data were used to validate the Symphonie model, a 3D primitive equations circulation model. The circulation features displayed by in situ data were well reproduced by Symphonie. A downscaling modelling approach was implemented, the largest scale being obtained by the replay of the MFSTEP regional model of the North-Western Mediterranean Sea.  相似文献   

19.
A previously unknown field of large‐scale sedimentary bodies has been mapped and studied on the continental shelf off the Cape Trafalgar near the Strait of Gibraltar with particular emphasis on the relationship between large‐scale sediment bodies and the superimposed bedforms. This study is based on a grid of 975 km of high‐resolution seismic profiles collected at water depths ranging between 15 and 60 m. High variability of large‐scale sedimentary bodies is attributed to the complex interaction of hydrodynamic agents. The most prominent sedimentary features are sand banks and ridges that indicate long‐term southwest and southward‐directed sediment transport patterns, possibly due to the interplay of two dominant current systems flowing southward and westward. These sediment bodies evolve laterally to distinct external geometries, such as sand shoals in shallow water and sand sheets in the vicinity of larger sand banks that indicate moderate current velocities. In addition, pre‐existing physiography is considered to play a role in the generation of certain sediment bodies, developed over inclined surfaces or confined laterally by elevations. Relationships between superimposed bedforms (mostly very large dunes) and underlying sediment bodies vary across the study area. Most superimposed bedforms occur over the complex mosaic of sediment banks and sheets, suggesting the interaction of several high‐energy currents with different directions, such as tidal and/or wind‐driven currents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The inner shelves of active, energetic continental margins are frequently defined as regions of sediment segregation and fine-sediment bypassing. The Waiapu River, North Island, New Zealand presents an opportunity to study fine-sediment segregation and strata formation in a spatially constrained, highly energetic, aggradational setting, with one of the highest sediment yields on earth. We present evidence that the inner shelf of the Waiapu River plays a significant role in both the fate of fine-grained (<63 μm) riverine sediments and the formation of continental margin stratigraphy. Results obtained from high-resolution interferometric bathymetry and high-frequency seismic mapping ground-truthed by cores show significant stratigraphic spatial variation preserved on the Waiapu inner shelf. This spatial variation is likely controlled by spatially-distinct sediment deposition and resuspension processes as well as antecedent geology. Two distinct depositional regions are interpreted as: (1) surface plume-dominated with partial resuspension, characterized by acoustically transparent seismic reflection profiles and muddy sands; and (2) event-layer dominated, characterized by thickly laminated sediments. A modern-day bathymetric low overlying an observed paleochannel may influence the fate of hyperpycnal flows transiting the shelf via bathymetric steering. Fining-upward sequences found over the entire shelf are interpreted to represent deforestation-induced sedimentation that has overwhelmed the ability of the energetic system to resuspend and segregate fine sediments. We conclude that the primary control on strata formation on the inner shelf of the Waiapu River is local sediment supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号