首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
2.
Vertical mixing by the tides plays a key role in controlling water column structure over the seasonal cycle in shelf seas. The influence of tidal stirring is generally well represented as a competition between surface buoyancy input and the production of turbulent kinetic energy (TKE) by frictional stresses, a competition which is encapsulated in the Qh/u3 criterion. An alternative control mechanism arises from the limitation of the thickness of the bottom boundary layer due to the effects of rotation and the oscillation of the flow. Model studies indicate that, for conditions typical of the European shelf seas, the energy constraint exerts the dominant control but that for tidal streams with large positive polarisation (i.e. anti-clockwise rotation of velocity vector), some influence of rotation in limiting mixing should be detectable. We report here measurements of flow structure (with ADCPs) and turbulent dissipation (FLY Profiler) made at two similar locations in the Celtic Sea which differ principally in that the tidal currents rotate in opposite senses with approximately equal magnitude (polarity P=±0.6). A clear contrast was observed between the two sites in the vertical structure of the currents, the density profile and the rate of dissipation of TKE. At the positive polarity (PP) site (P≈+0.6), the bottom boundary layer in the tidal flow was limited to ∼20 mab (metre above the bed) and significant dissipation from bottom boundary friction was constrained within this layer. At the negative polarity (NP) site (P≈−0.6), the dominant clockwise rotary current component exhibited a velocity defect (i.e. reduction relative to the free stream) extending into the upper half of the water column while significant dissipation was observed to penetrate much further up the water column with dissipation levels ∼10−4.5 W m−3 reaching to the base of the pycnocline at 70–80 mab. These contrasting features of the vertical distribution of dissipation are well reproduced by a 1-D model when run with windstress and tidal forcing and using the observed density profile. Model runs with reversed polarity at the two sites, support the conclusion that the observed contrast in the structure of tidal velocity, dissipation and stratification is due to the influence of tidal stream polarity. Increased positive polarity reduces the upward penetration of mixing which allows the development of stronger seasonal stratification, which, in turn, further inhibits vertical mixing.  相似文献   

3.
《Continental Shelf Research》1999,19(14):1833-1848
A well-defined front in temperature and salinity separates the stratified Clyde Sea water from the vertically well mixed water of the North Channel. The detailed structure of the front was observed in autumn 1990 by a combination of, repeated crossings of the front using a ship-borne ADCP and a towed undulating CTD system, and the deployment of a fixed mooring system with temperature, salinity and velocity sensors for a period of 12 days. The results show that the front was situated on the Great Plateau near a contour of log10(H/U32)=2.7∼3.7 where H is the water depth and U2 the amplitude of M2 tidal velocity. The temperature structure in the Clyde Sea was inverted and the Clyde Sea surface temperature was lower than that of the vertically well mixed water in the North Channel. Since the salinity gradient was stronger than the temperature gradient with fresher water on the surface, the density structure was predominantly controlled by salinity. There were indications of warm and saline bottom water upwelling on the mixed side of the front during spring tides. This upwelling disappeared and the salinity and temperature structure at the front was more diffuse during the neap tide period. A jet-like along-front residual current was observed flowing to the northwest in the surface layer with a counter flow to the southeast in the bottom layer. The vertical difference in velocity was about 9 cm s−1 and was approximately consistent with the shear determined from the thermal wind relation. Both cross- and along-front components of the current observed at the mooring station varied in response to the advection of the front, although both components had large variations with periods of less than one day and several days. The front was advected past the mooring system by a mean flow from the North Channel to the inner basin, while oscillating 3–5 km back and forth with the tidal currents. From the velocity at a current meter mooring and CTD data, the front was estimated to have moved up to 20 km during the observational period and the cross frontal velocity was inferred to be 3–4 cm s−1.  相似文献   

4.
Tidal current and elevation data were collected from five oceanographic moorings during October 2004 in Torres Strait, northern Australia, to assess the effects of large bedforms (i.e., sand banks) on the drag coefficient (CD) used for estimating bed shear stress in complex shallow shelf environments. Ten minute averages of tidal current speed and elevation data were collected for 18 days at an on-bank site (<7 m water depth) and an off-bank site (<10 m). These data were compared to data collected simultaneously from two shelf locations (<11 m) occupied to measure regional tidal behaviour. Overall CD estimates at the on- and off-bank sites attained 7.0±0.1×10−3 and 6.6±0.1×10−3, respectively. On-bank CD estimates also differed between the predominant east–west tidal streams, with easterly directed flows experiencing CD=7.8±0.18×10−3 and westerly directed flows CD=6.4±0.12×10−3. Statistically significant differences between the off-bank and on-bank sites are attributed to the large form drag exerted by the sand banks on the regional tidal currents, and statistically significant differences between the westward and eastward flows is ascribed to bedform asymmetry. Form drag from the large bedforms in Torres Strait comprises up to 65% of the total drag coefficient. When constructing sediment transport models, different CD estimates must therefore be applied to shelf regions containing steep bedforms compared to regions that do not. Our results extend the limited inventory of seabed drag coefficients for shallow shelf environments, and can be used to improve existing regional seabed mobilisation models, which have direct application to environmental management in Torres Strait.  相似文献   

5.
A continental shelf scale survey from 22°S to 34°S along the Western Australia coast provides the first detailed synoptic examination of the structure, circulation and modification of the southward flowing Leeuwin Current (LC) during the late austral autumn-early winter (May-June 2007). At lower latitudes (22°S-25°S), the LC was masked within a broad expanse of warm ambient surface water, which extended across the shelf and offshore before becoming constrained at the shelf break and attaining its maximum velocity of ∼1.0 m s−1 at 28°S. The temperature and salinity signature of the LC experienced substantial modification as it flowed poleward; surface temperature of the LC decreased by ∼5.25 °C while surface salinity increased by ∼0.72, consistent with climatology estimates and smaller (larger) for temperature (salinity) than those found during summer. Subsequently, LC water was denser by ∼2σT in the south compared to the north, and the surface mixed layer of the LC revealed only a small deepening trend along its poleward trajectory. Modification of the LC resulted from a combination of mixing due to geostrophic inflow and entrainment of cooler, more saline surrounding subtropical waters, and convective mixing driven by large heat loss to the atmosphere. Air-sea heat fluxes accounted for 50% of the heat lost from the LC in the south, whilst only accounting for 25% in the north, where large geostrophic inflow occurred and the LC displayed its maximum flow. The onshore transport was characterised by distinct jet-like structures, enhanced in the upper 200 m of the water column, and the presence of eddies in the vicinity of the shelf break generated offshore transport.  相似文献   

6.
Semidiurnal tidal currents on the outer shelf of the Mackenzie Shelf in the Beaufort Sea were found to be strongly influenced by the locally generated baroclinic tide. Two primary factors are involved in this process: (1) the sharp shelf break along the northeastern Mackenzie Shelf, promoting the generation of vigorous internal tidal waves; and (2) the proximity to critical latitudes for M2 and N2 motions locking these waves and preventing them from leaving the source region. As a result, internal tides are resonantly trapped between the shelf and critical latitudes. The physical properties and temporal variations of tidal motions were examined using current meter measurements obtained from 1987–1988 at four sites (SS1, SS2, SS3, and SS4) offshore of the shelf break at depths of ∼200 m. Each mooring had Aanderaa RCM4s positioned at ∼35 m below the surface and ∼50 m above the bottom. Complex demodulation was used to compute the envelopes (amplitude modulation) of these components. A striking difference in the variability of clockwise (CW) and counterclockwise (CCW) tidal currents was found. The CW tides are highly variable, have greater amplitude, exhibit a burst-like character associated with wind events and contain about 80% of the total energy of the semidiurnal tidal currents. In contrast, the CCW components have a more regular temporal regime with distinct monthly, fortnightly and 10-day modulation at astronomical periodicities associated with frequency differences M2–N2 (0.03629 cpd), S2–M2 (0.06773 cpd), and S2–N2 (0.10402 cpd). Significant horizontal correlation of the CW current envelopes was found only between stations near the northeast Mackenzie Shelf, indicating this to be the main area of baroclinic internal wave generation.  相似文献   

7.
Abstract

The stability of a shear flow on a sloping bottom in a homogeneous, rotating system was investigated by means of a laboratory experiment.

The basic flow was driven near a vertical wall of a circular container by a ring-shaped plate that contacted with a free surface of the working fluid and rotated relative to the fluid container. The velocity profile was asymmetric in the radial direction and had only one inflection point. The velocity profile was well expressed by a linear theory for the vertical shear layer.

The effect of the circular geometry was checked by comparing experimental results obtained in two fluid systems in which only the sign of the curvature was opposite and it was confirmed that circular geometry was not essential for the shear flow on the sloping bottom in this experiment.

It was found that the sloping bottom stabilizes the basic flow only when the drift direction of the topographic Rossby wave is opposite to that of the basic flow. The viscous dissipation in both the Ekman layer and the interior region was also important in determining the critical Rossby number.

The eddy fields caused by the instability can be classified into two types: One is the stationary eddy field in which a row of eddies moves along the basic flow without changing form. The other is the flow pattern in which eddies have finite life times and their configuration is not well organized. When the sloping bottom does not stabilize the basic flow, the former flow pattern is realized, otherwise the latter flow pattern appears.

The wave numbers of the eddies in the regular flow pattern were observed as a function of the Rossby number. The relation did not fit to linear preferred modes predicted by an eigenvalue problem.  相似文献   

8.
Although large-scale tidal and inertial motions dominate the kinetic energy and vertical current shear in shelf seas and ocean, short-scale internal waves at higher frequencies close to the local buoyancy frequency are of some interest for studying internal wave breaking and associated diapycnal mixing. Such waves near the upper limit of the inertio-gravity wave band are thought to have relatively short O (102–103 m) horizontal scales and to show mainly up- and downward motions, which contrasts with generally low aspect ratio large-scale ocean currents. Here, short-term vertical current (w) observations using moored acoustic Doppler current profiler (ADCP) are presented from a shelf sea, above a continental slope and from the open ocean. The observed w, with amplitudes between 0.015 and 0.05 m s−1, all span a considerable part of the water column, which is not a small vertical scale O(water depth) or O (100–500 m, the maximum range of observations), with either 0 or π phase change. This implies that they actually represent internal waves of low vertical modes 1 or 2. Maximum amplitudes are found in layers of largest stratification, some in the main pycnocline bordering the frictional bottom boundary layer, suggesting a tidal source. These ‘pycnocline-w’ compose a regular train of (solitary) internal waves and linearly decrease to small values near surface and bottom.  相似文献   

9.
10.
The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A v reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A v, lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixing.  相似文献   

11.
Estimates of clearance rates (CR) of Cerastoderma edule (300 ind. m−2) as a function of free-stream current velocity (U) (from 5 to 40 cm s−1) were compared between a small annular (60 l) and a large racetrack (8850 l) flume with different hydrodynamic conditions. Results showed that the flumes differ considerably in their hydrodynamic characteristics. The relationship between CR and U is different in the two flume tanks, however there appears to be a straightforward unimodal trend between CR and shear velocity (U*). It was found that the cockles themselves influence the benthic boundary layer (BBL) characteristics, by causing steeper velocity gradients and increasing the mixing over the cockle bed compared to bare sediment. This provides new evidence on how endobenthic organisms can affect the BBL. However, the influence of CR on U* could not be quantified because these parameters have interactive effects that cannot be dissociated.  相似文献   

12.
The Eulerian residual transport velocity and the first-order Lagrangian residual velocity for weakly nonlinear systems have been used extensively in the past to depict inter-tidal mass transport. However, these could not explain the observed net surface sediment transport pattern in Jiaozhou Bay (JZB), located on the western Yellow Sea. JZB is characterized by strong tidal motion, complex topography and an irregular coastline, which are features of typical nonlinear systems. The Lagrangian residual velocity, which is applicable to general nonlinear systems, was simulated with the water parcel tracking method. The results indicate that the composition of the Lagrangian residual velocity at different tidal phases coincides well with the observed net surface sediment transport pattern. The strong dependence of water flushing time on the initial tidal phase can also be explained by the significant intra-tidal variation of the Lagrangian residual velocity. To investigate the hydrodynamic mechanism governing the nonlinearity of the M 2 tidal system, a set of nonlinearity indexes were defined and analysed. In the surface layer, horizontal advection is the main contributor to the strong nonlinearity near the bay mouth, while in the bottom layer, the strong nonlinearity near the bay mouth may result from the vertical viscosity and horizontal advection.  相似文献   

13.
To clarify the sources and transformation of NO3 on the Pacific coast of Japan, observations over the continental shelf were conducted during the summer in 2005 and 2006 when the Kuroshio flowed close to and away from the coastal area, respectively. Below the halocline, there are two prominent salinity peaks that originated in two different waters. In the subsurface layer, the salinity maximum (Smax) was indicative of the Kuroshio Water (KW), while the salinity minimum (Smin) in the middle layer at ∼400 m depth was indicative of the North Pacific Intermediate Water (NPIW). δ15NNO3 ranged from 4.1‰ to 5.1‰ with a mean of 4.8±0.4‰ in the deeper water around Smin. Below 50 m depth over the shelf break, δ15NNO3 values (3.1±0.8‰ in 2005 and 4.6±0.3‰ in 2006) clearly increased as contribution of NPIW increased in 2006. On the contrary, subsurface δ15N of NO3 values (−1.1±0.1‰) remained unchanged in both years, although the contribution of the KW to the subsurface water changed significantly. This suggests that the source of NO3 has little effect on the δ15N of NO3 in this layer. The negative δ15N values also coincided with the base of the chlorophyll maximum layer suggesting that these isotopic signals must be evidence of active nitrification in the upper layer.  相似文献   

14.
Sheet flows occur widely in natural free-surface flows including rivers in flood, tidal estuaries and coastal waters in storm conditions when bed shear stress becomes sufficiently high. Particle volumetric concentration in sheet flows normally follows a linear distribution with the Rouse [Rouse H. Modern conceptions of the mechanics of fluid turbulence. Trans ASCE, 1937;102:463–543] distribution applicable in the dilute water column above the sheet-flow layer. However, a well-verified formula for determining particle velocity distribution in sheet flows is still lacking. This paper presents formulas to describe the particle velocity profile in steady or oscillatory sheet flows. They compare well with measured data. In particular, the novel formula for determining the particle velocity at the top of bedload–sediment-dominated sublayer in sheet flows is also well verified with measured data.  相似文献   

15.
This study employed a coupled water-air two-phase flow and salt water transport model to analyze the behaviors of generated airflow in unsaturated zones and the fluctuations of salinity at the salt–fresh water interface in a two-layered unconfined aquifer with a sloping beach surface subjected to tidal oscillations. The simulation results show that as the new dynamic steady state including effects of tidal fluctuations is reached through multiple tidal cycles, the dispersion zone in the lower salt water wedge is broadened because fresh water/salt water therein flows continuously landward or seaward during tidal cycles. The upper salt–fresh water interface exhibits more vulnerable to the tidal fluctuations, and the variation of salinity therein is periodic, which is irrelevant to the hydraulic head but is influenced by the direction and velocity of surrounding water-flow. With the tidal level fluctuating, airflow is mainly concentrated in the lower permeable layer due to the restraint of the upper semi-permeable layer, and the time-lag between the pore-air pressure and the tidal level increases with distance from the coastline. The effect of airflow in unsaturated zones can be transmitted downward, causing both the magnitude of salinity and its amplitude in the upper salt–fresh water interface to be smaller for the case with airflow than without airflow due to the resistance of airflow to water-flow. Sensitivity analysis reveal that distributions of airflow in unsaturated zones are affected by the permeability of the upper/lower layer and the van Genuchten parameter of the lower layer, not by the van Genuchten parameter of the upper layer, whereas the salinity fluctuations in the salt–fresh water interface are affected only by soil parameters of the lower layer.  相似文献   

16.
Observations of internal wave current fluctuations at a site on the European continental shelf are described. These have revealed current ‘pulses’ of regular tidal (M2) phase which may be associated with internal tides generated at the shelf-edge. Current ‘pulses’ have been observed with amplitudes of 30 to 40 cm s?1 superimposed on peak spring tidal currents of the order 60 to 70 cm s?1. The measurements have shown that these fluctuations extended throughout the bottom mixed layer to within at least 2 m of the sea bed where they may play an important role in modifying sediment transport rates.  相似文献   

17.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   

18.
19.
A modified version of the 3D finite-element hydrostatic model QUODDY-4 is used to quantify the changes in the dynamics and energetics of the M 2 surface tide in the North European Basin, induced by the spatial variability in bottom roughness. This version differs from the original one, as it introduces a module providing evaluation of the drag coefficient in the bottom boundary layer (BBL) and by accounting for the equilibrium tide. The drag coefficient is found from the resistance laws for an oscillatory rotating turbulent BBL over hydrodynamically rough and incompletely rough underlying surfaces, describing how the wave friction factor as well as other resistance characteristics depend on the dimensionless similarity parameters for the BBL. It is shown that the influence of the spatial variability in bottom roughness is responsible for some specific changes in the tidal amplitudes, phases, and the maximum tidal velocities. These changes are within the model noise, while the changes in the averaged (over a tidal cycle) horizontal wave transport and the averaged dissipation of barotropic tidal energy may be of the same orders of magnitude as are the above energetic characteristics as such. Thus, contrary to present views, ignoring the spatial variability in bottom roughness at least in the North European Basin is only partially correct: it is valid for the tidal dynamics, but is liable to break down for the tidal energetics.  相似文献   

20.
Coastal upwelling events in the California Current System can transport subsurface waters with high levels of carbon dioxide (CO2) to the sea surface near shore. As these waters age and are advected offshore, CO2 levels decrease dramatically, falling well below the atmospheric concentration beyond the continental shelf break. In May 2007 we observed an upwelling event off the coast of northern California. During the upwelling event subsurface respiration along the upwelling path added ∼35 μmol kg−1 of dissolved inorganic carbon (DIC) to the water as it transited toward shore causing the waters to become undersaturated with respect to Aragonite. Within the mixed layer, pCO2 levels were reduced by the biological uptake of DIC (up to 70%), gas exchange (up to 44%), and the addition of total alkalinity through CaCO3 dissolution in the undersaturated waters (up to 23%). The percentage contribution of each of these processes was dependent on distance from shore. At the time of measurement, a phytoplankton bloom was just beginning to develop over the continental shelf. A box model was used to project the evolution of the water chemistry as the bloom developed. The biological utilization of available nitrate resulted in a DIC decrease of ∼200 μmol kg−1, sea surface pCO2 near ∼200 ppm, and an aragonite saturation state of ∼3. These results suggest that respiration processes along the upwelling path generally increase the acidification of the waters that are being upwelled, but once the waters reach the surface biological productivity and gas exchange reduce that acidification over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号