首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This project was undertaken to provide information about the composition and fate of brevetoxins in concert with the multidisciplinary study, ECOHAB-FL, of Karenia brevis blooms in the Gulf of Mexico. Brevetoxin composition was provided for water samples collected during and in the absence of K. brevis blooms from November 1998, through September 2002. The identity and concentration of the most abundant brevetoxins were determined using high performance liquid chromatography with ultraviolet diode array detection (HPLC-DAD). The analytical methods changed in 2002 to the use of a mass spectrometer for brevetoxin identification and quantitation. The most abundant brevetoxins observed during blooms were PbTx-1, -2 and -3. PbTx-2 was the most abundant toxin observed in viable bloom situations with an abundance of K. brevis cells. Starting with the 2000 cruises, a distinction was made between intra-cellular toxins (inside viable K. brevis cells) and extra-cellular brevetoxins (dissolved brevetoxins outside of the cell). An important observation was the change in composition of the major brevetoxins from intra-cellular to extra-cellular toxins. The most abundant intra-cellular toxin was PbTx-2, whereas the most abundant brevetoxin recovered from the extra-cellular (dissolved) fraction in the water was PbTx-3. The abundance of PbTx-3 relative to PbTx-2 generally increased as a bloom aged, indicating the conversion of PbTx-2 to -3 as cells lysed, and the persistence of PbTx-3 in the water after cell death.  相似文献   

2.
Karenia brevis, a toxic dinoflagellate that blooms regularly in the Gulf of Mexico, frequently causes widespread ecological and economic damage and can pose a serious threat to human health. A means for detecting blooms early and monitoring existing blooms that offers high spatial and temporal resolution is desired. Between 1999 and 2001, a large bio-optical data set consisting of spectral measurements of remote-sensing reflectance (Rrs(λ)), absorption (a(λ)), and backscattering (bb(λ)) along with chlorophyll a concentrations and K. brevis cell counts was collected on the central west Florida shelf (WFS) as part of the Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) and Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) programs. Reflectance model simulations indicate that absorption due to cellular pigmentation is not responsible for the factor of ∼3–4 decrease observed in Rrs(λ) for waters containing greater than 104 cells l−1 of K. brevis. Instead, particulate backscattering is responsible for this decreased reflectivity. Measured particulate backscattering coefficients were significantly lower when K. brevis concentrations exceeded 104 cells l−1 compared to values measured in high-chlorophyll (>1.5 mg m−3), diatom-dominated waters containing fewer than 104 cells l−1 of K. brevis. A classification technique for detecting high-chlorophyll, low-backscattering K. brevis blooms is developed. In addition, a method for quantifying chlorophyll concentrations in positively flagged pixels using fluorescence line height (FLH) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) is introduced. Both techniques are successfully applied to Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and MODIS data acquired in late August 2001 and validated using in situ K. brevis cell concentrations.  相似文献   

3.
Blooms of the toxic dinoflagellates, Karenia spp. occur nearly annually in the eastern Gulf of Mexico with cell abundances typically >105 cells L−1. Thermal and ocean color satellite imagery shows sea surface temperature patterns indicative of upwelling events and the concentration of chlorophyll at fronts along the west Florida continental shelf. Daily cell counts of Karenia show greater increases in cell concentrations at fronts than can be explained by Karenia's maximum specific growth rate. This is observed in satellite images as up to a 10-fold greater increase in chlorophyll biomass over 1–2 d periods than can be explained by in situ growth. In this study, we propose a model that explains why surface blooms of Karenia may develop even when nutrients on the west Florida shelf are low. In the summer, northward winds produce a net flow east and southeast bringing water and nutrients from the Mississippi River plume onto the west Florida shelf at depths of 20–50 m. This water mass supplies utilizable inorganic and organic forms of nitrogen that promote the growth of Karenia to pre-bloom concentrations in sub-surface waters in the mid-shelf region. In the fall, a change to upwelling favorable winds produces onshore transport. This transport, coupled with the swimming behavior of Karenia, leads to physical accumulation at frontal regions near the coast, resulting in fall blooms. Strong thermal fronts during the winter provide a mechanism for re-intensification of the blooms, if Karenia cells are located north of the fronts. This conceptual model leads to testable hypotheses on bloom development throughout the Gulf of Mexico.  相似文献   

4.
As part of the ECOHAB: Florida Program, we studied three large blooms of the harmful bloom forming dinoflagellate Karenia brevis. These blooms formed on the West Florida Shelf during Fall of 2000 off Panama City, and during Fall 2001 and Fall 2002 off the coastline between Tampa Bay and Charlotte Harbor. We suggest that these blooms represent two different stages of development, with the 2000 and 2001 blooms in an active growth or maintenance phase and the 2002 bloom in the early bloom initiation phase. Each bloom was highly productive with vertically integrated primary production values of 0.47–0.61, 0.39–1.33 and 0.65 g C m−2 d−1 for the 2000, 2001 and 2002 K. brevis blooms, respectively. Carbon specific growth rates were low during each of these blooms with values remaining fairly uniform with depth corresponding to generation times of 3–5 days. Nitrogen assimilation by K. brevis was highest during 2001 with values ranging from 0.15 to 2.14 μmol N L−1 d−1 and lower generally for 2000 and 2002 (0.01–0.64 and 0.66–0.76 μmol N L−1 d−1 for 2000 and 2002, respectively). The highest K. brevis cell densities occurred during the 2001 bloom and ranged from 400 to 800 cells mL−1. Cell densities were lower for each of the 2000 and 2002 blooms relative to those for 2001 with densities ranging from 100 to 500 cells mL−1. The 2000 and 2001 blooms were dominated by K. brevis in terms of its contribution to the total chlorophyll a (chl a) pool with K. brevis accounting generally for >70% of the observed chl a. For those populations that were dominated by K. brevis (e.g. 2000 and 2001), phytoplankton C biomass (Cp,0) constituted <30% of the total particulate organic carbon (POC). However, in 2002 when diatoms and K. brevis each contributed about the same to the total chl a, Cp,0 was >72% of the POC. The fraction of the total chl a that could be attributed to K. brevis was most highly correlated with POC, chl a and salinity. Nitrogen assimilation rate and primary production were highly correlated with a greater correlation coefficient than all other comparisons.  相似文献   

5.
In situ surveys (1997–2002) of Karenia brevis distribution on the west Florida shelf were used to explain spectral remote sensing reflectance, chlorophyll-a concentration, and backscattering coefficient estimates derived using SeaWiFS satellite data. Two existing approaches were tested in an attempt to differentiate K. brevis blooms from other blooms or plumes. A chlorophyll-anomaly method used operationally by the National Oceanic and Atmospheric Administration (NOAA) sometimes correctly identified K. brevis blooms but also generated false positives and false negatives. The method identified approximately 1000 km2 of high chlorophyll-anomalies (>1 mg m−3) off southwest Florida between the 10 and 50-m isobaths nearly every day from summer to late fall. Whether these patches were K. brevis blooms or not is unknown. A second method used a backscattering:chlorophyll-a ratio to identify K. brevis patches. This method separated K. brevis from other blooms using in situ optical data, but it yielded less satisfactory results with SeaWiFS data. Spectral reflectance (Rrs) estimates for K. brevis blooms, diatom blooms, and coastal river plumes are statistically similar for many cases. Large pixel size, shallow water, and imperfect algorithms distort satellite retrievals of bio-optical parameters in patchy blooms. At present, a combination of chlorophyll-a, chlorophyll-anomaly, backscattering:chlorophyll-a ratio, RGB composites, MODIS fluorescence data, as well as time-series analysis and ancillary data such as winds, currents, and sea surface temperature can improve K. brevis bloom assessments. Progress in atmospheric correction and bio-optical inversion algorithms is required to help improve capabilities to monitor K. brevis blooms from space. Further, satellite sensors with improved radiometric capabilities and temporal/spatial resolutions are also required.  相似文献   

6.
The development of accurate predictive models of toxic dinoflagellate blooms is of great ecological importance, particularly in regions that are most susceptible to their detrimental effects. This is especially true along the west Florida shelf (WFS) and coast, where episodic bloom events of the toxic dinoflagellate Karenia brevis often wreak havoc on the valuable commercial fisheries and tourism industries of west Florida. In an effort to explain the dynamics at work within the maintenance and termination phases of a red tide, a simple three-dimensional coupled biophysical model was used in the analysis of the October 1999 red tide offshore Sarasota, Florida. Results of the numerical experiments indicate that: (1) measured and modeled flowfields were capable of transporting the observed offshore inoculum of K. brevis to within 16 km of the coastal boundary; (2) background concentrations (1000 cells L−1) of K. brevis could grow to a red tide of over 2×106 cells L−1 in little more than a month, assuming an estuarine initiation site with negligible offshore advection, no grazing losses, negligible competition from other phytoplankton groups, and no nutrient limitation; (3) maximal grazing pressure could not prevent the initiation of a red tide or cause its termination, assuming no other losses to algal biomass and a zooplankton community ingestion rate similar to that of Acartia tonsa; and (4) the light-cued ascent behavior of K. brevis served as an aggregational mechanism, concentrating K. brevis at the 55 μE m−2 s−1 isolume when mean concentrations of K. brevis exceeded 100,000 cells L−1. Further improvements in model fidelity will be accomplished by the future inclusion of phytoplankton competitors, disparate nutrient availability and limitation schemes, a more realistic rendering of the spectral light field and the attendant effects of photo-inhibition and compensation, and a mixed community of vertically-migrating proto- and metazoan grazers. These model refinements are currently under development and shall be used to aid progress toward an operational model of red tide forecasting along the WFS.  相似文献   

7.
Suspended sediments form an integral part of shelf sea systems, determining light penetration for primary production through turbidity and dispersion of pollutants by adsorption and settling of particles. The settling speed of suspended particles depends on their size and on turbulence. Here a method of determining particle size via remote sensing measurements of ocean colour and brightness has been applied to a set of monthly satellite images of the Irish Sea covering a full year (2006). The suspended sediment concentration was calculated from the ratio between green (555 nm) and red (665 nm) wavelengths in MODIS imagery. Empirical formulae were employed to convert suspended sediment concentrations and irradiance reflectance in the red part of the spectrum into specific scattering by mineral particles and floc size. A geographical pattern was evident in all images with shallow areas with fast currents having high year-average suspended sediment concentrations (7.6 mg l−1), high specific scattering (0.225 m2 g−1) and thus small particle sizes (143 μm). The reverse is true for deeper areas with slower currents, e.g. the Gyre southwest of the Isle of Man where turbidity levels are lower (3.3 mg l−1), specific scattering is lower (0.081 m2 g−1) and thus particle sizes are larger (595 μm) on average over a year. Temporal signals are also seen over the year in these parameters with minimum seasonal amplitudes (a factor 3.5) in the Turbidity Maximum and maximum seasonal amplitudes twice as large (a factor 7) in the Gyre. In the Gyre heating overcomes mixing in summer and stratification occurs allowing suspended sediments to settle out and flocs to grow large. The size of aggregated flocs is theoretically proportional to the Kolmogorov scale. This scale was calculated using depth, current, and wind speed data and compared to the size of flocculated particles. The proportionality changes through the year, indicating the influence of biological processes in summer in promoting larger flocs.  相似文献   

8.
A historical data set is used to describe the coastal transition zone off Northwest Africa during spring 1973 and fall 1975, from 17° to 26°N, with special emphasis on the interaction between subtropical (North Atlantic Central Waters) and tropical (South Atlantic Central Waters) gyres. The near-surface geostrophic circulation, relative to 300 m, is quite complex. Major features are a large cyclonic pattern north of Cape Blanc (21°N) and offshore flow at the Cape Verde front. The large cyclone occurs in the region of most intense winds, and resembles a large meander of the baroclinic southward upwelling jet. The Cape Verde frontal system displays substantial interleaving that may partly originate as mesoscale features at the coastal upwelling front. Property–property diagrams show that the front is an effective barrier to all properties except temperature. The analysis of the Turner angle suggests that the frontal system is characterized by large heat horizontal diffusion as a result of intense double diffusion, which results in the smoothing of the temperature horizontal gradients. Nine cross-shore sections are used to calculate along-shore geostrophic water-mass and nutrient transports and to infer exchanges between the coastal transition zone and the deep ocean (import: deep ocean to transition zone; export: transition zone to deep ocean). These exchanges compare well with mean wind-induced transports and actual geostrophic cross-shore transport estimates. The region is divided into three areas: southern (18–21°N), central (21–23.5°N), and northern (23.5–26°N). In the northern area geostrophic import is roughly compensated with wind-induced export during both seasons. In the central area geostrophic import is greater than wind-induced export during spring, resulting in net import of both water (0.8 Sv) and nitrate (14 kmol s−1), but during fall both factors again roughly cancel. In the southern area geostrophy and wind join to export water and nutrients during both seasons, they increase from 0.6 Sv and 3 kmol s−1 during fall to 2.9 Sv and 53 kmol s−1 during spring.  相似文献   

9.
The dynamics of size-fractionated phytoplankton along the salinity gradient in the Pearl River Estuary and the adjacent near-shore oceanic water was investigated using microscopic, flow cytometric, and chlorophyll analyses in the early spring (March) and early autumn (September) of 2005. In the inner part of the estuary where salinity was less than 30, the phytoplankton community was dominated by micro- and nano-sized (3–200 μm) cells, particularly the diatom Skeletonema costatum, both in early spring and early autumn. In areas where salinity >30, including the mixing zone and nearshore oceanic water, micro- and nano-sized cell populations dominated the phytoplankton assemblage during early spring when influence of river discharge was minimal, whereas pico-sized (≤3 μm) cell populations were dominant during early autumn as a result of strong river discharge in the summer, with Synechococcus and pico-eukaryotes being predominant. Picophytoplankton were two orders of magnitude more abundant in early autumn (106 cells mL−1) than in early spring in the nearshore oceanic water. Nutrients delivered by freshwater input to the estuary were pushed toward high salinity (>30) areas as a result of short residence time, exerting a strong influence on phytoplankton abundance, especially picophytoplankton in the nearshore, otherwise oligotrophic, water. Influenced by high abundance of DIN and limitation in phosphorus, picophytoplankton in the adjacent nearshore oceanic water rose to prominence seasonally. Our results indicate that eutrophication in the Pearl River Estuary not only stimulates the growth of S. costatum in the nutrient-rich areas of the estuary but also appears to promote the growth of Synechococcus and pico-eukaryotes in the adjacent usually oligotrophic oceanic water at least during our autumn cruise.  相似文献   

10.
As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12–14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates (μmin 0.17–0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.  相似文献   

11.
Zhao J  Cao W  Yang Y  Wang G  Zhou W  Sun Z 《Marine pollution bulletin》2008,56(10):1795-1801
A moored optical buoy was deployed in the Pearl River estuarine waters for a 15-day period. A four-day algal bloom event occurred during this study period. Both chlorophyll a concentration and algal cell density (a proxy for biomass) changed dramatically before and after the event. The chlorophyll concentration at a 2.3 m depth rose from 5.15 mg/m−3 at 15:00 h on August 19 to 23.62 mg/m−3 at 9:00 h on August 21, and then decreased to 3.24 mg/m−3 at 15:00 h on August 24. The corresponding cell density ranged from 1.57 × 105 to 1.76 × 106 cells/L. We used normalized fluorescence line height (NFLH) and normalized fluorescence intensity (NFI) in order to determine fluorescence activity. Combined with the in situ sampling dataset, we were able to correlate natural fluorescence (NFLH and NFI) with chlorophyll a concentrations, and found correlation coefficients of 0.72 and 0.75, respectively. We also found correlations between natural fluorescence and cell density, with correlation coefficients of 0.71 and 0.65, respectively. These results indicate that applying continuous time series of natural fluorescence can reflect changes in biomass. This technique will prove extremely useful for in situ and real-time observations using an optical buoy. Although there are still problems to solve in the real-time observation of natural fluorescence in algal bloom events, we discuss the primary factors affecting fluorescence signals and suggest possible methods for mitigating these issues.  相似文献   

12.
The seasonal ecological response of microzooplankton in the southeastern Arabian Sea is presented. During the spring intermonsoon period, stratification and depletion of nitrate in the surface waters (nitracline was at 60 m depth) cause low integrated chlorophyll a (av. 19±11.3 mg m−2) and primary production (av. 164±91 mgC m−2 d−1). On the other hand, nutrient enrichment associated with coastal upwelling and river influx during the onset and peak summer monsoon resulted in high integrated chlorophyll a (av. 21±6 mg m−2 and av. 29±21 mg m−2, respectively) and primary production (av. 255±94 mgC m−2 d−1 and av. 335±278 mgC m−2 d−1, respectively). During all three periods, diazotropic cyanobacterium Trichodesmium erythraeum dominated in the nutrient depleted surface waters. A general increase in abundance of larger diatoms was evident in the surface waters of the inshore region during monsoon periods. The microzooplankton abundance was found to be significantly higher during the spring intermonsoon (av.241±113×103 ind m−2) as compared to onset of summer monsoon (av. 105±89×103 ind m−2) and peak summer monsoon (av.185±175×103 ind m−2). Microzooplankton community during the spring intermonsoon was numerically dominated by ciliates while heterotrophic dinoflagellate was the dominant ones during the monsoon periods. The high abundance of ciliates during the spring intermonsoon could be attributed to the stratified environmental condition prevailed in the study area which favors high abundance of smaller phytoplankton and cyanobacteria, the most preferred food of ciliates. On the other hand, the dominance of heterotrophic dinoflagellates during the monsoon periods could be linked to their ability to graze larger diatoms which were abundant during the monsoon periods. The overall results show low abundance of microzooplankton in the eastern Arabian Sea during the monsoon periods mainly due to a decline in ciliates abundance. This decline during the monsoon periods could be the result of (a) low abundance of smaller phytoplankton and (b) high stock of mesozooplankton predators (av. 245 ml 100 m−3).  相似文献   

13.
A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 103 cells l−1 to 11.4 × 105 cells l−1) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 103 to 50 × 103 ind m−3). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted.  相似文献   

14.
Temporal and spatial distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) were determined in the East China Sea and the Yellow Sea during June-July, 2006 and January-February, 2007. The concentrations of DMS and total DMSP in surface water in the study area were 5.64 (1.79-12.24) and 28.25 (13.98-44.93) nmol L−1 in summer, and were 1.79 (1.02-3.51) and 11.01 (6.90-17.98) nmol L−1 in winter, respectively. The distributions of DMS and DMSP in the study area were obviously influenced by the Yangtze River effluent and the Kuroshio water. Even under highly variable hydrographic conditions, a significant relationship was observed between DMS and chlorophyll a concentrations in summer as well as in winter, suggesting that phytoplankton biomass might play an important role in controlling DMS distribution in the study area. The summer ratios of DMS/chlorophyll a and DMSP/chlorophyll a were approximately twofold higher than winter values, corresponding with the temporal variation in phytoplankton community structure between summer and winter. The sea-to-air fluxes of DMS were estimated to be 5.32 and 11.92 μmol m−2 d−1 using the equations of Liss and Merlivat (1986) and Wanninkhof (1992), respectively.  相似文献   

15.
Phytoplankton cells in estuary waters usually experience drastic changes in chemical and physical environments due to mixing of fresh and seawaters. In order to see their photosynthetic performance in such dynamic waters, we measured the photosynthetic carbon fixation by natural phytoplankton assemblages in the Jiulong River estuary of the South China Sea during April 24-26 and July 24-26 of 2008, and investigated its relationship with environmental changes in the presence or the absence of UV radiation. Phytoplankton biomass (Chl a) decreased sharply from the river-mouth to seawards (17.3-2.1 μg L−1), with the dominant species changed from chlorophytes to diatoms. The photosynthetic rate based on Chl a at noon time under PAR-alone increased from 1.9 μg C (μg Chl a)−1 L−1 in low salinity zone (SSS < 10) to 12.4 μg C (μg Chl a)−1 L−1 in turbidity front (SSS within 10-20), and then decreased to 2.1 μg C (μg Chl a)−1 L−1 in mixohaline zone (SSS > 20); accordingly, the carbon fixation per volume of seawater increased from 12.8 to 149 μg C L−1 h−1, and decreased to 14.3 μg C L−1 h−1. Solar UVR caused the inhibition of carbon fixation in surface water of all the investigated zones, by 39% in turbidity area and 7-10% in freshwater or mixohaline zones. In the turbidity zone, higher availability of CO2 could have enhanced the photosynthetic performance; while osmotic stress might be responsible for the higher sensitivity of phytoplankton assemblages to solar UV radiation.  相似文献   

16.
Identifying nutrient sources, primarily nitrogen (N) and phosphorus (P), sufficient to support high biomass blooms of the red tide dinoflagellate, Karenia brevis, has remained problematic. The West Florida Shelf is oligotrophic, yet populations >106 cells L−1 frequently occur and blooms can persist for months. Here we examine the magnitude and variety of sources for N and P that are available to support blooms. Annual average in situ or background concentrations of inorganic N in the region where blooms occur range 0.02–0.2 μM while inorganic P ranges 0.025–0.24 μM. Such concentrations would be sufficient to support the growth of populations up to ∼3×104 cells L−1 with at least a 1 d turnover rate. Organic N concentrations average 1–2 orders of magnitude greater than inorganic N, 8–14 μM while organic P concentrations average 0.2–0.5 μM. Concentrations of organic N are sufficient to support blooms >105 cells L−1 but the extent to which this complex mixture of N species is utilizable is unknown. Other sources of nutrients included in our analysis are aerial deposition, estuarine flux, benthic flux, zooplankton excretion, N2-fixation, and subsequent release of organic and inorganic N by Trichodesmium spp., and release of N and P from dead and decaying fish killed by the blooms. Inputs based on atmospheric deposition, benthic flux, and N2-fixation, were minor contributors to the flux required to support growth of populations >2.6×104 cells L−1. N and P from decaying fish could theoretically maintain populations at moderate concentrations but insufficient data on the flux and subsequent mixing rates does not allow us to calculate average values. Zooplankton excretion rates, based on measured zooplankton population estimates and excretion rates could also supply all of the N and P required to support populations of 105 and 106 cells L−1, respectively, but excretion is considered as “regenerated” nutrient input and can only maintain biomass rather than contribute to “new” biomass. The combined estuarine flux from Tampa Bay, Charlotte Harbor, and the Caloosahatchee River can supply a varying, but at times significant level of N and P to meet growth and photosynthesis requirements for populations of approximately 105 cells L−1 or below. Estimates of remineralization of dead fish could supply a significant proportion of bloom maintenance requirements but the rate of supply must still be determined. Overall, a combination of sources is required to maintain populations >106 cells L−1.  相似文献   

17.
Little information currently exists on spatial and temporal benthic community variations in tropical coastal lagoons. Here, the benthic community response to habitat variation in the Celestun coastal lagoon, northwest Yucatan peninsula, was seasonally examined during the 1994–1995 climatic cycle into a grid of 12 sampling sites distributed along the salinity gradient of the lagoon. Habitat variation was assessed through physical factors associated both to the water column (e.g. salinity) and the bottom sediment (e.g. sand, silt and clay fractions). The benthic community response was assessed through species diversity measures and abundance. Under the influence of climatic seasonality, variations in habitat conditions followed by changes in the benthic community characteristics were expected. Results from two-way ANOVAs showed that for the period of study, Celestun lagoon was more heterogeneous along the spatial axis of variability than along the temporal one. Multiple regression analysis showed that salinity was spatially the main factor influencing the benthic community characteristics. Temporally, the sediment characteristics were observed to exert significant effects on the species diversity characteristics but not on abundance. Other variables assessed (dissolved oxygen, pH, temperature and water column transparency) exhibited no significant covariance with species diversity and abundance. Since generated from historical data, these results have the potential to be useful as a benchmark to the establishment of monitoring programs in the light of the increasing anthropogenic pressure on the natural resources of the lagoon and surrounding coastal area.  相似文献   

18.
Fecal pellet production rate and oxygen consumption rate of copepod fecal pellets egested by Paracalanus sp., Acartia spinicauda and Centropages orsinii feeding on a diatom Thalassiosira pseudonana were measured. Fecal pellet production rates varied between 3.6 and 80.6 pellets ind−1 d−1 among three species, with fecal pellet production of Paracalanus sp. significantly higher than the other two copepod species. Average pellet size varied between 2.82 × 105 μm3 for Paracalanus sp. and 5.36 × 105 μm3 for A. spinicauda. Average volumetric oxygen consumption rates were 27.32, 5.84 and 45 fmol O2 μm−3 d−1 for fecal pellets produced by Paracalanus sp., A. spinicauda and C. orsinii, respectively. The potential oxygen consumption of fecal pellets egested from Paracalanus sp. was the highest due to its high fecal pellet production rate and high population abundance throughout the year. Overall, the approximate in situ oxygen consumption due to copepod fecal pellet degradation was significant in estuarine and coastal waters of Hong Kong. Results of this study give insight of the role of zooplankton in potential occurrence of hypoxia in coastal waters during summer.  相似文献   

19.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

20.
A spatial and temporal study on data collected along the longitudinal gradient of the Principal Channel of Bahía Blanca estuary, Argentina, was carried out during 1992–1993. At nine stations, phytoplankton abundance, chlorophyll a (Chl-a) concentration, inorganic nutrient levels, Secchi disk depth, euphotic depth:mixing depth ratio (Zeu:Zm), salinity and temperature were recorded. Phytoplankton abundance, Chl-a concentration and nutrient levels decreased towards the outer zone of the estuary. The inner zone (stations 1 and 2), which was characterized by high turbidity, high nutrient concentrations and high Zeu:Zm (>0.16, [critical mixing ratio]), registered the highest phytoplankton abundance and Chl-a concentrations. Temporal variability of data was also noteworthy in this zone. The highest biomass values thus corresponded to June, July, August and the beginning of spring (18 μg Chl-a L−1 and 9×106 cells L−1) concomitantly with a diatom bloom. In the middle zone (stations 3–6), a strong phytoplankton biomass decrease was observed and it coincided with both deep-mixed depths and low Zeu:Zm (<0.16). The outer zone (stations 7–9), which was characterized by low phytoplankton biomass values and low nutrient levels all along the year, was the area mostly influenced by waters from the adjacent continental shelf. In view of the above, it can be concluded that the most important primary production in the Bahía Blanca would be produced in the shallow inner zone during winter, being the spatial reach of the phytoplankton biomass principally limited to estuarine waters. Presumably, less than 5% of such biomass may reach the coastal area of the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号