首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

2.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

3.
In order to characterize the composition of the parental melts of intracontinental alkali-basalts, we have undertaken a study of melt and fluid inclusions in olivine crystals in basaltic scoria and associated upper mantle nodules from Puy Beaunit, a volcano from the Chaîne des Puys volcanic province of the French Massif Central (West-European Rift system). Certain melt inclusions were experimentally homogenised by heating-stage experiments and analysed to obtain major- and trace-element compositions. In basaltic scoria, olivine-hosted melt inclusions occur as primary isolated inclusions formed during growth of the host phase. Some melt inclusions contain both glass and daughter minerals that formed during closed-system crystallisation of the inclusion and consist mainly of clinopyroxene, plagioclase and rhönite crystals. Experimentally rehomogenised and naturally quenched, glassy inclusions have alkali-basalt compositions (with SiO2 content as low as 42 wt%, MgO>6 wt%, Na2O+K2O>5 wt%, Cl~1,000–3,000 ppm and S~400–2,000 ppm), which are consistent with those expected for the parental magmas of the Chaîne des Puys magmatic suites. Their trace-element signature is characterized by high concentration(s) of LILE and high LREE/HREE ratios, implying an enriched source likely to have incorporated small amounts of recycled sediments. In olivine porphyroclasts of the spinel peridotite nodules, silicate melt inclusions are secondary in nature and form trails along fracture planes. They are generally associated with secondary CO2 fluid inclusions containing coexisting vapour and liquid phases in the same trail. This observation and the existence of multiphase inclusions consisting of silicate glass and CO2-rich fluid suggest the former existence of a CO2-rich silicate melt phase. Unheated glass inclusions have silicic major-element compositions, with normative nepheline and olivine components, ~58 wt% SiO2, ~9 wt% total alkali oxides, <3 wt% FeO and MgO. They also have high chlorine levels (>3,000 ppm) but their sulphur concentrations are low (<200 ppm). Comparison with experimental isobaric trends for peridotite indicates that they represent high-pressure (~1.0 GPa) trapped aliquots of near-solidus partial melts of spinel peridotite. Following this hypothesis, their silica-rich compositions would reflect the effect of alkali oxides on the silica activity coefficient of the melt during the melting process. Indeed, the silica activity coefficient decreases with addition of alkalis around 1.0 GPa. For mantle melts coexisting with an olivine-orthopyroxene-bearing mineral assemblage buffering SiO2 activity, this decrease is therefore compensated by an increase in the SiO2 content of the melt. Because of their high viscosity and the low permeability of their matrix, these near-solidus peridotite melts show limited ability to segregate and migrate, which can explain the absence of a chemical relationship between the olivine-hosted melt inclusions in the nodules and in basaltic scoria.  相似文献   

4.
We performed modified iterative sandwich experiments (MISE) to determine the composition of carbonatitic melt generated near the solidus of natural, fertile peridotite + CO2 at 1,200–1,245°C and 6.6 GPa. Six iterations were performed with natural peridotite (MixKLB-1: Mg# = 89.7) and ∼10 wt% added carbonate to achieve the equilibrium carbonatite composition. Compositions of melts and coexisting minerals converged to a constant composition after the fourth iteration, with the silicate mineral compositions matching those expected at the solidus of carbonated peridotite at 6.6 GPa and 1,230°C, as determined from a sub-solidus experiment with MixKLB-1 peridotite. Partial melts expected from a carbonated lherzolite at a melt fraction of 0.01–0.05% at 6.6 GPa have the composition of sodic iron-bearing dolomitic carbonatite, with molar Ca/(Ca + Mg) of 0.413 ± 0.001, Ca# [100 × molar Ca/(Ca + Mg + Fe*)] of 37.1 ± 0.1, and Mg# of 83.7 ± 0.6. SiO2, TiO2 and Al2O3 concentrations are 4.1 ± 0.1, 1.0 ± 0.1, and 0.30 ± 0.02 wt%, whereas the Na2O concentration is 4.0 ± 0.2 wt%. Comparison of our results with other iterative sandwich experiments at lower pressures indicate that near-solidus carbonatite derived from mantle lherzolite become less calcic with increasing pressure. Thus carbonatitic melt percolating through the deep mantle must dissolve cpx from surrounding peridotite and precipitate opx. Significant FeO* and Na2O concentrations in near solidus carbonatitic partial melt likely account for the ∼150°C lower solidus temperature of natural carbonated peridotite compared to the solidus of synthetic peridotite in the system CMAS + CO2. The experiments demonstrate that the MISE method can determine the composition of partial melts at very low melt fraction after a small number of iterations.  相似文献   

5.
The composition of S-rich apatite, of volatile-rich glass inclusions in apatite, and of interstitial glasses in alkaline xenoliths from the 1949 basanite eruption in La Palma has been investigated to constrain the partitioning of volatiles between apatite and alkali-rich melts. The xenoliths are interpreted as cumulates from alkaline La Palma magmas. Apatite contains up to 0.89 wt% SO3 (3560 ppm S), 0.31 wt% Cl, and 0.66 wt% Ce2O3. Sulfur is incorporated in apatite via several independent exchange reactions involving (P5+, Ca2+) vs. (S6+, Si4+, Na+, and Ce3+). The concentration of halogens in phonolitic to trachytic glasses ranges from 0.15 to 0.44 wt% for Cl and from <0.07 to 0.65 wt% for F. The sulfur concentration in the glasses ranges from 0.06 to 0.23 wt% SO3 (sulfate-saturated systems). The chlorine partition coefficients (DClapatite/glass) range from 0.4 to 1.3 (average DClapatite/glass = 0.8), in good agreement with the results of experimental data in mafic and rhyolitic system with low Cl concentrations. With increasing F in glass inclusions DFapatite/glass decreases from 35 to 3. However, most of our data display a high partition coefficient (~30) close to DFapatite/glass determined experimentally in felsic rock. DSapatite/glass decreases from 9.1 to 2.9 with increasing SO3 in glass inclusions. The combination of natural and experimental data reveals that the S partition coefficient tends toward a value of 2 for high S content in the glass (>0.2 wt% SO3). DSapatite/glass is only slightly dependent on the melt composition and can be expressed as: SO3 apatite (wt%) = 0.157 * ln SO3 glass (wt%) + 0.9834. The phonolitic compositions of glass inclusions in amphibole and haüyne are very similar to evolved melts erupted on La Palma. The lower sulfur content and the higher Cl content in the phonolitic melt compared to basaltic magmas erupted in La Palma suggest that during magma evolution the crystallization of haüyne and pyrrhotite probably buffered the sulfur content of the melt, whereas the evolution of Cl concentration reflects an incompatible behavior. Trachytic compositions similar to those of the (water-rich) glass inclusions analyzed in apatite and clinopyroxene are not found as erupted products. These compositions are interpreted to be formed by the reaction between water-rich phonolitic melt and peridotite wall-rock.  相似文献   

6.
We document compositions of minerals and melts from 3 GPa partialmelting experiments on two carbonate-bearing natural lherzolitebulk compositions (PERC: MixKLB-1 + 2·5 wt% CO2; PERC3:MixKLB-1 + 1 wt% CO2) and discuss the compositions of partialmelts in relation to the genesis of alkalic to highly alkalicocean island basalts (OIB). Near-solidus (PERC: 1075–1105°C;PERC3: 1050°C) carbonatitic partial melts with <10 wt%SiO2 and 40 wt% CO2 evolve continuously to carbonated silicatemelts with >25 wt% SiO2 and <25 wt% CO2 between 1325 and1350°C in the presence of residual olivine, orthopyroxene,clinopyroxene, and garnet. The first appearance of CO2-bearingsilicate melt at 3 GPa is 150°C cooler than the solidusof CO2-free peridotite. The compositions of carbonated silicatepartial melts between 1350 and 1600°C vary in the rangeof 28–46 wt% SiO2, 1·6–0·5 wt% TiO2,12–10 wt% FeO*, and 19–29 wt% MgO for PERC, and42–48 wt% SiO2, 1·9–0·5 wt% TiO2,10·5–8·4 wt% FeO*, and 15–26 wt% MgOfor PERC3. The CaO/Al2O3 weight ratio of silicate melts rangesfrom 2·7 to 1·1 for PERC and from 1·7 to1·0 for PERC3. The SiO2 contents of carbonated silicatemelts in equilibrium with residual peridotite diminish significantlywith increasing dissolved CO2 in the melt, whereas the CaO contentsincrease markedly. Equilibrium constants for Fe*–Mg exchangebetween carbonated silicate liquid and olivine span a rangesimilar to those for CO2-free liquids at 3 GPa, but diminishslightly with increasing dissolved CO2 in the melt. The carbonatedsilicate partial melts of PERC3 at <20% melting and partialmelts of PERC at 15–33% melting have SiO2 and Al2O3 contents,and CaO/Al2O3 values, similar to those of melilititic to basaniticalkali OIB, but compared with the natural lavas they are moreenriched in CaO and they lack the strong enrichments in TiO2characteristic of highly alkalic OIB. If a primitive mantlesource is assumed, the TiO2 contents of alkalic OIB, combinedwith bulk peridotite/melt partition coefficients of TiO2 determinedin this study and in volatile-free studies of peridotite partialmelting, can be used to estimate that melilitites, nephelinites,and basanites from oceanic islands are produced from 0–6%partial melting. The SiO2 and CaO contents of such small-degreepartial melts of peridotite with small amounts of total CO2can be estimated from the SiO2–CO2 and CaO–CO2 correlationsobserved in our higher-degree partial melting experiments. Thesesuggest that many compositional features of highly alkalic OIBmay be produced by 1–5% partial melting of a fertile peridotitesource with 0·1–0·25 wt% CO2. Owing to verydeep solidi of carbonated mantle lithologies, generation ofcarbonated silicate melts in OIB source regions probably happensby reaction between peridotite and/or eclogite and migratingcarbonatitic melts produced at greater depths. KEY WORDS: alkali basalts; carbonated peridotite; experimental petrology; ocean island basalts; partial melting  相似文献   

7.
Interaction between slab-derived melt and mantle peridotite and the role of slab melt as a metasomatizing agent in the sub-arc mantle is being increasingly recognized. Adakite, the slab melt erupted on the surface, usually exhibits anomalously high MgO, CaO, Cr and Ni contents that indicate interaction with mantle peridotitite. Here we note that Cenozoic adakites have Na2O contents below 5.8 wt.% with ∼95% samples lower than 5.0 wt.%, and are generally depleted in this component relative to experimental basalt partial melts (mostly beyond 5.0 wt.% and up to 9.0 wt.% Na2O) produced under 1.5-3.0 GPa conditions that are most relevant to adakite production. We interpret the adakite Na depletion to be also a consequence of the melt / rock reaction that takes place within the hot mantle wedge. During ascent and reaction with mantle peridotite, primary adakite melts gain mantle components MgO, CaO, Cr and Ni but lose Na2O, SiO2 and perhaps K2O to the mantle, leading to Na-rich mantle metasomatism. Selective assimilation of predominately mantle clinopyroxene, some spinel and minor olivine at high T/P has been considered to be an important process in producing high-Mg adakites from primary low-Mg slab melts [Killian, R., Stern, C. R., 2002. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths. Eur. J. Mineral. 14, 25-36]. In such a process, Na depletion in the assimilated melt is the result of dilution due to the increase in melt mass. Phase relationships in the reaction system siliceous melt + peridotite and quantitative calculation suggest that assimilation of mantle clinopyroxene, olivine and spinel and fractional crystallization of sodic amphibole and orthopyroxene, under conditions of moderate T/P and increasing melt mass, is also an important process that modifies the composition of adakites and causes the Na depletion.  相似文献   

8.
Chromitites from a single section through the mantle in the Oman ophiolite are of two different types. Low-cr# chromitites, of MORB affinity are found in the upper part of the section, close to the Moho. High-cr# chromitites, with arc affinities are found deeper in the mantle. Experimental data are used to recover the compositions of the melts parental to the chromitites and show that the low-cr# chromitites were derived from melts with 14.5–15.4 wt% Al2O3, with 0.4 to 0.9 wt% TiO2 and with a maximum possible mg# of 0.76. In contrast the high-cr# chromitites were derived from melts with 11.8–12.9 wt% Al2O3, 0.2–0.35 wt% TiO2 and a maximum melt mg# of 0.785. Comparison with the published compositions of lavas from the Oman ophiolite shows that the low-cr# chromitites may be genetically related to the upper (Lasail, and Alley) pillow lava units and the high-cr# chromitites the boninites of the upper pillow lava Alley Unit. The calculated TiO2–Al2O3 compositions of the parental chromitite magmas indicate that the high-cr# chromitites were derived from high-Ca boninitic melts, produced by melting of depleted mantle peridotite. The low-cr# chromitites were derived from melts which were a mixture of two end-members—one represented by a depleted mantle melt and the other represented by MORB. This mixing probably took place as a result of melt–rock reaction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

10.
High-pressure melting experiments were performed at ~26 GPa and ~2,200–2,400°C on synthetic peridotite compositions with varying FeO and Al2O3 contents and on a synthetic CI chondrite analogue composition. Peridotite liquids show a crystallisation sequence of ferropericlase (Fp) followed down temperature by Mg-silicate perovskite (MgPv) + Fp, which contrasts a sequence of MgPv followed by MgPv + Fp observed in the chondritic composition. The difference in crystallisation sequence is a consequence of the different bulk Mg/Si ratios. MgPv/melt partition coefficients for major, minor and trace elements were determined by electron microprobe and secondary ion mass spectrometry. Partition coefficients of tri- and tetravalent elements increase with increasing Al concentration in MgPv. A lattice strain model indicates that Al3+ substitutes predominantly onto the Si-site in MgPv, whereas most elements substitute onto the Mg-site, which is consistent with a charge-compensating coupled substitution mechanism. MgPv/melt partition coefficients for Mg (DMg) and Si (DSi) are related to the melt Mg/Si ratio such that DSi becomes lower than DMg at low Mg/Si melt ratios. We use a crystal fractionation model, based on upper mantle refractory lithophile element ratios, to constrain the amount of MgPv and Ca-silicate perovskite (CaPv) that could have fractionated during a Hadean magma ocean event and could still be present as a chemically distinct heterogeneity in the lower mantle today. We show that a fractionated crystal pile composed of 96% MgPv and 4% CaPv could comprise up to 13 wt% of the entire mantle.  相似文献   

11.
The ~1.74 Ga Damiao anorthosite complex, North China, is composed of anorthosite and leuconorite with subordinate melanorite, mangerite, oxide-apatite gabbronorite, perthite noritic (i.e., jotunitic) and ferrodioritic dykes. The complex hosts abundant vein-, pod- and lens-like Fe–Ti–P ores containing variable amounts of apatite (10–60 modal%) and Fe–Ti oxides. In addition to Fe–Ti–P ores, there are also abundant Fe–Ti ores which are closely associated with Fe–Ti–P ores in the deposit. Most of Fe–Ti–P ores are dominated by Fe–Ti oxides and apatite, devoid of silicate minerals, mineralogically similar to the common nelsonites elsewhere. In contrast, Fe–Ti ores are dominated by Fe–Ti oxides with minor apatite (<5 modal %). The parental magma of these ores, estimated from olivine and apatite compositions using mineral-melt partition coefficients, has composition similar to the ferrodioritic dykes. Fe–Ti–P ores have variable Fe–Ti oxides and apatite proportions, indicating that they are cumulates. Their simple assemblage of Fe–Ti oxides and apatite and local net-texture suggest that the Fe–Ti–P ores in Damiao have formed from nelsonitic melts immiscibly separated from the ferrodioritic magma during late-stage differentiation. Fe–Ti ores are also cumulates and have mineral compositions similar to Fe–Ti–P ores. The close association between Fe–Ti and Fe–Ti–P ores indicates that the Fe–Ti ores may have also formed from the nelsonitic melts. We proposed that differentiation of nelsonitic melts accompanied by gravity settling is responsible for the formation of Fe–Ti and Fe–Ti–P ores. Such a differentiation process in nelsonitic melts is well supported by variations of Sr, Y, Th, U, REE and Eu/Eu* of apatite in Fe–Ti–P ores. Using oxides/apatite ratio of 2:1 and compositions of apatite and calculated primary oxides, we estimate the composition of the nelsonitic melt as ~52.0 wt% Fe2O3t, ~18.5 wt% CaO, ~14.2 wt% P2O5, ~8.7 wt% TiO2, ~4.0 wt% Al2O3 and ~1.1 wt% MgO with minor SiO2, K2O, Na2O and F. Such a nelsonitic melt is suggested to be possibly conjugated with Si-rich melts compositionally similar to the Damiao jotunitic dykes (~50 wt% SiO2 and ~15 wt% Fe2O3t) which may subsequently evolve to mangeritic rocks in Damiao. Our modeling also indicates that the onset of immiscibility occurs at a time when the evolved melt has ~44 wt% SiO2, ~21 wt% Fe2O3t, ~3.0 wt% TiO2 and ~2.6 wt% P2O5. High oxygen fugacity and phosphorous content in magmas may play important roles in the immiscibility of nelsonitic magmas, including promoting iron enrichments and widening the two-liquid field.  相似文献   

12.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

13.
The Earth’s uppermost asthenosphere is generally associated with low seismic wave velocity and high electrical conductivity. The electrical conductivity anomalies observed from magnetotelluric studies have been attributed to the hydration of mantle minerals, traces of carbonatite melt, or silicate melts. We report the electrical conductivity of both H2O-bearing (0–6 wt% H2O) and CO2-bearing (0.5 wt% CO2) basaltic melts at 2 GPa and 1,473–1,923 K measured using impedance spectroscopy in a piston-cylinder apparatus. CO2 hardly affects conductivity at such a concentration level. The effect of water on the conductivity of basaltic melt is markedly larger than inferred from previous measurements on silicate melts of different composition. The conductivity of basaltic melts with more than 6 wt% of water approaches the values for carbonatites. Our data are reproduced within a factor of 1.1 by the equation log σ = 2.172 − (860.82 − 204.46 w 0.5)/(T − 1146.8), where σ is the electrical conductivity in S/m, T is the temperature in K, and w is the H2O content in wt%. We show that in a mantle with 125 ppm water and for a bulk water partition coefficient of 0.006 between minerals and melt, 2 vol% of melt will account for the observed electrical conductivity in the seismic low-velocity zone. However, for plausible higher water contents, stronger water partitioning into the melt or melt segregation in tube-like structures, even less than 1 vol% of hydrous melt, may be sufficient to produce the observed conductivity. We also show that ~1 vol% of hydrous melts are likely to be stable in the low-velocity zone, if the uncertainties in mantle water contents, in water partition coefficients, and in the effect of water on the melting point of peridotite are properly considered.  相似文献   

14.
Solubility and solution mechanisms in silicate melts of oxidized and reduced C-bearing species in the C-O-H system have been determined experimentally at 1.5 GPa and 1400 °C with mass spectrometric, NMR, and Raman spectroscopic methods. The hydrogen fugacity, fH2, was controlled in the range between that of the iron-wüstite-H2O (IW) and the magnetite-hematite-H2O (MH) buffers. The melt polymerization varied between those typical of tholeiitic and andesitic melts.The solubility of oxidized (on the order of 1-2 wt% as C) and reduced carbon (on the order of 0.15-0.35 wt% as C) is positively correlated with the NBO/Si (nonbridging oxygen per silicon) of the melt. At given NBO/Si-value, the solubility of oxidized carbon is 2-4 times greater than under reducing conditions. Oxidized carbon dioxide is dissolved as complexes, whereas the dominant reduced species in melts are CH3-groups forming bonds with Si4+ together with molecular CH4. Formation of complexes results in silicate melt polymerization (decreasing NBO/Si), whereas solution of reduced carbon results in depolymerization of melts (increasing NBO/Si).Redox melting in the Earth’s interior has been explained with the aid of the different solution mechanisms of oxidized and reduced carbon in silicate melts. Further, effects of oxidized and reduced carbon on melt viscosity and on element partitioning between melts and minerals have been evaluated from relationships between melt polymerization and dissolved carbon combined with existing experimental data that link melt properties and melt polymerization. With total carbon contents in the melts on the order of several mol%, mineral/melt element partition coefficients and melt viscosity can change by several tens to several hundred percent with variable redox conditions in the range of the Earth’s deep crust and upper mantle.  相似文献   

15.
Peridotite xenoliths from Grenada,Lesser Antilles Island Arc   总被引:2,自引:2,他引:0  
Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts.Editorial responsibility: T.L. Grove  相似文献   

16.
Olivine/melt partitioning of ΣFe, Fe2+, Mg2+, Ca2+, Mn2+, Co2+, and Ni2+ has been determined in the systems CaO-MgO-FeO-Fe2O3-SiO2 (FD) and CaO-MgO-FeO-Fe2O3-Al2O3-SiO2 (FDA3) as a function of oxygen fugacity (fO2) at 0.1 MPa pressure. Total iron oxide content of the starting materials was ∼20 wt%. The fO2 was to used to control the Fe3+/ΣFe (ΣFe: total iron) of the melts. The Fe3+/ΣFe and structural roles of Fe2+ and Fe3+ were determined with 57Fe resonant absorption Mössbauer spectroscopy. Changes in melt polymerization, NBO/T, as a function of fO2 was estimated from the Mössbauer data and existing melt structure information. It varies by ∼100% in melts coexisting with olivine in the FDA3 system and by about 300% in the FD system in the Fe3+/ΣFe range of the experiments (0.805-0.092). The partition coefficients ( in olivine/wt% in melt) are systematic functions of fO2 and, therefore, NBO/T of the melt. There is a -minimum in the FDA3 system at NBO/T-values corresponding to intermediate Fe3+/ΣFe (0.34-0.44). In the Al-free system, FD, where the NBO/T values of melts range between ∼1 and ∼2.9, the partition coefficients are positively correlated with NBO/T (decreasing Fe3+/ΣFe). These relationships are explained by consideration of solution behavior in the melts governed by Qn-unit distribution and structural changes of the divalent cations in the melts (coordination number, complexing with Fe3+, and distortion of the polyhedra).  相似文献   

17.
To better understand the origin, migration, and evolution of melts in the lithospheric mantle and their roles on the destruction of the North China Craton (NCC), we conducted a petrological and geochemical study on a quartz-bearing orthopyroxene-rich websterite xenolith from Hannuoba, the NCC, and its hosted melt and fluid inclusions. Both clinopyroxene and orthopyroxene in the xenolith contain lots of primary and secondary inclusions. High-temperature microthermometry of melt inclusions combined with Raman spectroscopy analyses of coexisting fluid inclusions shows that the entrapment temperature of the densest inclusions was ~1215°C and the pressure ~11.47 kbar, corresponding to a depth of ~38 km, i.e. within the stability of the spinel lherzolite. Intermediate pressure inclusions probably reflect progressive fluid entrapment over a range of depths during ascent, whereas the low-pressure inclusions (P < 2 kbar) may represent decrepitated primary inclusions. In situ laser-ablation ICP-MS analyses of major and trace elements on individual melt inclusions show that the compositions of these silicate melt inclusions in clinopyroxene and orthopyroxene are rich in SiO2, Al2O3, and alkalis but poor in TiO2 and strongly enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), with negative anomalies of high-field strength elements (HFSEs). These characteristics suggest that the silica-rich melts could be derived from the partial melting of subducted oceanic slab. Therefore, this kind of quartz-bearing orthopyroxene-rich websterite may be produced by interaction between the slab-derived melts with the mantle peridotite. This study provides direct evidence for the origin, migration, and evolution of melts in the lithospheric mantle, which may play an important role in the destruction of the NCC.  相似文献   

18.
Optical microscopy and transmission electron microscopy (TEM) on a porphyroclastic high temperature spinel peridotite from the Rhön area reveal fine, irregular glass layers and pockets along mineral interfaces, cracks in olivine, inside olivine crystals and in spongy rims of clinopyroxene. The chemical composition of the glass deviates significantly from the composition of the host basanite. Electron diffraction technique confirms the amorphous nature of the glass, thus classifying it as a former melt. Every grain or phase boundary shows amorphous intergranular glass layers of variable thickness and characteristic chemical composition with distinct chemical inhomogeneities. Olivine grain boundaries, as the most common type of interfaces, exhibit two different types of melt glasses: (1) Type I melt at olivine grain boundaries, which is characterized by low contents of SiO2 (~37?wt%) and Al2O3 (~5?wt%) and elevated contents of MgO (~31?wt%) and FeO (~22?wt%), is supposed to have formed prior to or during the thermal overprint and the dynamic recrystallisation of the xenolith in the mantle. Melt inclusions inside olivine grains with an average composition of type I melt are suggested to be earlier melt droplets at olivine interfaces, overgrown by migrating olivine grain boundaries during recrystallization in the mantle prior to the uplift of the xenolith. (2) Type II melt, the most common type of melt in the xenolith, shows higher contents of SiO2 (~48?wt%) and Al2O3 (~17?wt%) but lower contents of MgO (~20?wt%) and FeO (~11?wt%). The observation of different types of glass within a single xenolith indicates the development of different chemical melt equilibria at interfaces or triple junctions in the xenolith. The absence of geochemical trends in bivariate plots excludes a unifying process for the genesis of these glasses. Melt inclusions in the spongy rims of clinopyroxene are interpreted to be the product of a potassium-rich metasomatism. The formation of most amorphous intergranular melt layers and pockets at the mineral interfaces including type II melt at olivine grain boundaries is suggested to result from decompression melting during the uplift with the basalt magma. We suggest that these glasses were produced by grain boundary melting due to lattice mismatch and impurity segregation. The observed intergranular amorphous layers or melts represent the very beginning of mineral melting by grain boundary melting.  相似文献   

19.
Major and trace element compositions of constituent minerals, partly decomposed rims of orthopyroxenes (DRO), ‘closed’ melt pockets (CMP) and open melt pockets (OMP) in some Western Qinling peridotite xenoliths were obtained by LA-ICP-MS. Systematic core-to-rim compositional variations of garnet, clinopyroxene and orthopyroxene demonstrate that these minerals underwent variable degrees of subsolidus breakdown or partial melting. Both DROs and CMPs consist of similar mineral assemblages and are characterized by high TiO2, CaO + Na2O and low MgO contents; they are enriched in LREE and LILE compositions, have positive anomalies in Pb, Sr and particularly Ti, negative Th and U, and variable Zr and Hf anomalies. These chemical features are distinct and reflect reactions involving the orthopyroxenes. Compared to the CMPs, the OMPs, which are composed of a complex assemblage of minerals, display lower FeO and MgO contents, larger ranges in SiO2 and Na2O, higher TiO2, Al2O3, CaO and trace element concentrations, slightly negative Zr and Hf anomalies, and apparently negative Ti anomalies. Modeling calculations of partial fusion of orthopyroxenes and clinopyroxenes suggest that the CMPs most likely originated from the breakdown of orthopyroxenes with variably minor contribution of external melts from the melting of clinopyroxenes, whereas the OMPs were probably formed from the modification of the CMPs through the interaction with large amount of external melts.  相似文献   

20.
Low-Ca pyroxenes play an important role in mantle melting, melt-rock reaction, and magma differentiation processes. In order to better understand REE fractionation during adiabatic mantle melting and pyroxenite-derived melt and peridotite interaction, we developed a parameterized model for REE partitioning between low-Ca pyroxene and basaltic melts. Our parameterization is based on the lattice strain model and a compilation of published experimental data, supplemented by a new set of trace element partitioning experiments for low-Ca pyroxenes produced by pyroxenite-derived melt and peridotite interaction. To test the validity of the assumptions and simplifications used in the model development, we compared model-derived partition coefficients with measured partition coefficients for REE between orthopyroxene and clinopyroxene in well-equilibrated peridotite xenoliths. REE partition coefficients in low-Ca pyroxene correlate negatively with temperature and positively with both calcium content on the M2 site and aluminum content on the tetrahedral site of pyroxene. The strong competing effect between temperature and major element compositions of low-Ca pyroxene results in very small variations in REE partition coefficients in orthopyroxene during adiabatic mantle melting when diopside is in the residue. REE partition coefficients in orthopyroxene can be treated as constants at a given mantle potential temperature during decompression melting of lherzolite and diopside-bearing harzburgite. In the absence of diopside, partition coefficients of light REE in orthopyroxene vary significantly, and such variations should be taken into consideration in geochemical modeling of REE fractionation in clinopyroxene-free harzburgite. Application of the parameterized model to low-Ca pyroxenes produced by reaction between pyroxenite-derived melt and peridotite revealed large variations in the calculated REE partition coefficients in the low-Ca pyroxenes. Temperature and composition of starting pyroxenite must be considered when selecting REE partition coefficients for pyroxenite-derived melt and peridotite interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号