首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six glitches have been recently observed in the rotational frequency of the young pulsar PSR B1737−30 (J1740−3015) using the 25-m Nanshan telescope of Urumqi Observatory. With a total of 20 glitches in 20 yr, it is one of the most frequently glitching pulsars of the ∼1750 known pulsars. Glitch amplitudes are very variable with fractional increases in rotation rate ranging from 10−9 to 10−6. Interglitch intervals are also very variable, but no relationship is observed between interval and the size of the preceding glitch. There is a persistent increase in     , opposite in sign to that expected from slowdown with a positive braking index, which may result from changes in the effective magnetic dipole moment of the star during the glitch.  相似文献   

2.
A recent laboratory experiment suggests that a Kelvin–Helmholtz (KH) instability at the interface between two superfluids – one rotating and anisotropic, the other stationary and isotropic – may trigger sudden spin-up of the stationary superfluid. This result suggests that a KH instability at the crust–core (  1 S03 P2  –superfluid) boundary of a neutron star may provide a trigger mechanism for pulsar glitches. We calculate the dispersion relation of the KH instability involving two different superfluids including the normal fluid components and their effects on stability, particularly entropy transport. We show that an entropy difference between the core and crust superfluids reduces the threshold differential shear velocity and threshold crust–core density ratio. We evaluate the wavelength of maximum growth of the instability for neutron star parameters and find the resultant circulation transfer to be within the range observed in pulsar glitches.  相似文献   

3.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

4.
Three slow glitches in the rotation rate of the pulsar B1822−09 were revealed over the 1995–2004 interval. The slow glitches observed are characterized by a gradual increase in the rotation frequency with a long time-scale of several months, accompanied by a rapid decrease in the magnitude of the frequency first derivative by ∼1–2 per cent of the initial value and subsequent exponential increase back to its initial value on the same time-scale. The cumulative fractional increase in the pulsar rotation rate for the three glitches amounts to  Δν/ν0∼ 7 × 10−8  .  相似文献   

5.
PSR J1806−2125 is a pulsar discovered in the Parkes multibeam pulsar survey with a rotational period of 0.4 s and a characteristic age of 65 kyr. Between MJDs 51462 and 51894 this pulsar underwent an increase in rotational frequency of  Δ ν / ν ≈16×10-6  . The magnitude of this glitch is ∼2.5 times greater than any previously observed in any pulsar and 16 times greater than the mean glitch size. This Letter gives the parameters of the glitch and compares its properties with those of previously observed events. The existence of such large and rare glitches offers new hope for attempts to observe thermal X-ray emission from the internal heat released following a glitch, and suggests that pulsars which previously have not been observed to glitch may do so on long time-scales .  相似文献   

6.
The pulsar PSR B1259–63 is in a highly eccentric 3.4-yr orbit with the Be star SS 2883. Timing observations of this pulsar, made over a 7-yr period using the Parkes 64-m radio telescope, cover two periastron passages, in 1990 August and 1994 January. The timing data cannot be fitted by the normal pulsar and Keplerian binary parameters. A timing solution including a (non-precessing) Keplerian orbit and timing noise (represented as a polynomial of fifth order in time) provides a satisfactory fit to the data. However, because the Be star probably has a significant quadrupole moment, we prefer to interpret the data by a combination of timing noise, dominated by a cubic phase term, and ω. and x . terms. We show that the ω. and x . terms are likely to be a result of a precessing orbit caused by the quadrupole moment of the tilted companion star. We further rule out a number of possible physical effects which could contribute to the timing data of PSR B1259–63 on a measurable level.  相似文献   

7.
The timing properties of the 4.45 s pulsar in the Be X-ray binary system GRO J1750−27 are examined using hard X-ray data from INTEGRAL and Swift during a type II outburst observed during 2008. The orbital parameters of the system are measured and agree well with those found during the last known outburst of the system in 1995. Correcting the effects of the Doppler shifting of the period, due to the orbital motion of the pulsar, leads to the detection of an intrinsic spin-up that is well described by a simple model including     and     terms of  −7.5 × 10−10 s s−1  and  1 × 10−16 s s−2  , respectively. The model is then used to compare the time-resolved variation of the X-ray flux and intrinsic spin-up against the accretion torque model of Ghosh & Lamb; this finds that GRO J1750−27 is likely located 12–22 kpc distant and that the surface magnetic field of the neutron star is  ∼2 × 1012  G. The shape of the pulse and the pulsed fraction shows different behaviour above and below 20 keV, indicating that the observed pulsations are the convolution of many complex components.  相似文献   

8.
Shemar & Lyne have previously presented observations and an analysis of 32 glitches and their subsequent relaxations observed in a total of 15 pulsars. These data are brought together in this paper with those published by other authors. We show quantitatively how glitch activity decreases linearly with decreasing rate of slow-down. As indicated previously from studies of the Vela pulsar, the analysis suggests that 1.7 per cent of the moment of inertia of a typical neutron star is normally contained in pinned superfluid which releases its excess angular momentum at the time of a glitch. There is a broad range of glitch amplitude and there is a strong indication that pulsars with large magnetic fields suffer many small glitches while others show a smaller number of large glitches. Transient effects following glitches are very marked in young pulsars and decrease linearly with decreasing rate of slow-down, suggesting that the amount of loosely pinned superfluid decreases with age. We suggest that the low braking index of the Vela and Crab pulsars cannot be caused by a decreasing moment of inertia and should be attributed to step increases in the effective magnetic moment of the neutron star at the glitches.  相似文献   

9.
Many radio pulsars exhibit glitches wherein the star's spin rate increases fractionally by ∼10−10–10−6. Glitches are ascribed to variable coupling between the neutron star crust and its superfluid interior. With the aim of distinguishing among different theoretical explanations for the glitch phenomenon, we study the response of a neutron star to two types of perturbations to the vortex array that exists in the superfluid interior: (1) thermal motion of vortices pinned to inner crust nuclei, initiated by sudden heating of the crust, (e.g., a starquake), and (2) mechanical motion of vortices (e.g., from crust cracking by superfluid stresses). Both mechanisms produce acceptable fits to glitch observations in four pulsars, with the exception of the 1989 glitch in the Crab pulsar, which is best fitted by the thermal excitation model. The two models make different predictions for the generation of internal heat and subsequent enhancement of surface emission. The mechanical glitch model predicts a negligible temperature increase. For a pure and highly conductive crust, the thermal glitch model predicts a surface temperature increase of as much as ∼2 per cent, occurring several weeks after the glitch. If the thermal conductivity of the crust is lowered by a high concentration of impurities, however, the surface temperature increases by ∼10 per cent about a decade after a thermal glitch. A thermal glitch in an impure crust is consistent with the surface emission limits following the 2000 January glitch in the Vela pulsar. Future surface emission measurements coordinated with radio observations will constrain glitch mechanisms and the conductivity of the crust.  相似文献   

10.
During a systematic search for periodic signals in a sample of ROSAT PSPC (0.1–2.4 keV) light curves, we have discovered ∼12-min large-amplitude X-ray pulsations in 1WGA J1958.2+3232, an X-ray source which lies close to the Galactic plane. The energy spectrum is well fitted by a power law with a photon index of 0.8, corresponding to an X-ray flux level of ∼ 10−12 erg cm−2 s−1. The source is probably a long-period, low-luminosity X-ray pulsar, similar to X Per, or an intermediate polar.  相似文献   

11.
The fast-spinning Crab pulsar (∼30 turn s−1), which powers the massive expansion and synchrotron emission of the entire Crab nebula, is surrounded by quasi-stationary features such as fibrous arc-like wisps and bright polar knots in the radial range of 2×1016≲ r ≲2×1017 cm, as revealed by high-resolution (∼0.1 arcsec) images from the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). The spin-down energy flux (∼5×1038 erg s−1) from the pulsar to the luminous outer nebula, which occupies the radial range 0.1≲ r ≲2 pc, is generally believed to be transported by a magnetized relativistic outflow of an electron–positron e± pair plasma. It is then puzzling that mysterious structures like wisps and knots, although intrinsically dynamic in synchrotron emission, remain quasi-stationary on time-scales of a few days to a week in the relativistic pulsar wind. Here we demonstrate that, as a result of slightly inhomogeneous wind streams emanating from the rotating pulsar, fast magnetohydrodynamic (MHD) shock waves are expected to appear in the pulsar wind at relevant radial distances in the forms of wisps and knots. While forward fast MHD shocks move outward with a speed close to the speed of light c , reverse fast MHD shocks may appear quasi-stationary in space under appropriate conditions. In addition, Alfvénic fluctuations in the shocked magnetized pulsar wind can effectively scatter synchrotron beams from gyrating relativistic electrons and positrons.  相似文献   

12.
We present a model of a freely precessing neutron star, which is then compared against pulsar observations. The aim is to draw conclusions regarding the structure of the star, and to test theoretical ideas of crust–core coupling and superfluidity. We argue that, on theoretical grounds, it is likely that the core neutron superfluid does not participate in the free precession of the crust. We apply our model to the handful of proposed observations of free precession that have appeared in the literature. Assuming crust-only precession, we find that all but one of the observations are consistent with there being no pinned crustal superfluid at all; the maximum amount of pinned superfluid consistent with the observations is about 10−10 of the total stellar moment of inertia. However, the observations do not rule out the possibility that the crust and neutron superfluid core precess as a single unit. In this case the maximum amount of pinned superfluid consistent with the observations is about 10−8 of the total stellar moment of inertia. Both of these values are many orders of magnitude less than the 10−2 value predicted by many theories of pulsar glitches. We conclude that superfluid pinning, at least as it affects free precession, needs to be reconsidered.  相似文献   

13.
Large glitches were recently observed in the spin rates of two pulsars, B1046−58 and B1737−30. The glitches were characterized by fractional increases in rotation rate of 0.77 and  1.44×10−6  respectively. PSR B1737−30 is the most frequently glitching pulsar and this is the largest glitch so far observed from it. Most of the jump in the spin-down rate accompanying these glitches decayed away on short time-scales of a few days. For PSR B1737−30, there appears to be a cumulative shift in spin-down rate resulting from its frequent glitches. This probably accounts for its braking index of  −4±2  suggested by the available data, while a value of  2.1±0.2  is obtained for B1046−58.  相似文献   

14.
We report here on multifrequency radio observations of the pulsed emission from PSR B1259−63 around the time of the closest approach (periastron) to its B2e companion star. There was a general increase in the dispersion measure (DM) and scatter-broadening of the pulsar, and a decrease in the flux density towards periastron although fluctuation in these parameters were seen on time-scales as short as minutes. The pulsed emission disappeared 16 d prior to periastron and remained undetectable until 16 d after periastron.
The observations are used to determine the parameters of the wind from the Be star. We show that a simple model, in which the wind density varies with radius as r −2, provides a good fit to the data. The wind is highly turbulent with an outer scale of ≤1010 cm and an inner scale perhaps as small as 104 cm, a mean density of ∼106 cm−3 and a velocity of ∼2000 km s−1 at a distance of ∼50 stellar radii. We find a correlation between DM variations and the pulse scattering times, suggesting that the same electrons are responsible for both effects.  相似文献   

15.
A statistical study of 233 pulsar proper motions   总被引:2,自引:0,他引:2  
We present and analyse a catalogue of 233 pulsars with proper motion measurements. The sample contains a wide variety of pulsars including recycled objects and those associated with globular clusters or supernova remnants. After taking the most precise proper motions for those pulsars for which multiple measurements are available, the majority of the proper motions (58 per cent) are derived from pulsar timing methods, 41 per cent using interferometers and the remaining 1 per cent using optical telescopes. Many of the one-dimensional (1D) and two-dimensional (2D) speeds (referring to speeds measured in one coordinate only and the magnitudes of the transverse velocities, respectively) derived from these measurements are somewhat lower than earlier estimates because of the use of the most recent electron density model in determining pulsar distances. The mean 1D speeds for the normal and recycled pulsars are 152(10) and 54(6) km s−1, respectively. The corresponding mean 2D speeds are 246(22) and 87(13) km s−1. PSRs B2011+38 and B2224+64 have the highest inferred 2D speeds of  ∼1600 km s−1  . We study the mean speeds for different subsamples and find that, in general, they agree with previous results. Applying a novel deconvolution technique to the sample of 73 pulsars with characteristic ages less than 3 Myr, we find the mean three-dimensional (3D) pulsar birth velocity to be 400(40) km s−1. The distribution of velocities is well described by a Maxwellian distribution with  1D rms σ= 265 km s−1  . There is no evidence for a bimodal velocity distribution. The proper motions for PSRs B1830−08 and B2334+61 are consistent with their proposed associations with the supernova remnants W41 and G114.3+0.3, respectively.  相似文献   

16.
We present a steady one-dimensional model for a pulsar polar cap accelerator, where the field-aligned electric field and flow are solved self-consistently with a given current density. It is assumed that no particles return to the star. It is known that the space-charge-limited flow is accelerated to energies high enough to create electron–positron pairs if the assumed current density is high enough. We find that when pairs are created in such a space-charge-limited flow, the accelerating electric field is screened out within a short distance after pair creation, if the pair particle flux is larger than a critical value. We also find that a space charge density wave is excited in the screening region.
We find that a pair flux larger than the critical value M c=103–105 must be reached in a layer with thickness equal to the braking distance for the decelerating component. Therefore, the required multiplicity – the number of pairs created by one primary particle – is too large to be realized in the actual pulsar magnetosphere. We suggest that in order to obtain a localized potential drop along the polar cap magnetic flux, one needs to take into account additional effects such as wave–particle interaction or quasi-periodic pair creation.  相似文献   

17.
王娜  吴鑫基 《天文学进展》2000,18(3):229-237
射电脉冲星周期跃变被认为是研究中子星内部结构和状态的极好探针。脉冲星高频巡天发现了一批年青脉冲星,脉冲星周期跃变的观测研究也有了飞快进展。至少发现了25颗有跃变现象的脉冲星(简称跃变脉冲星)和76次跃变事件。PSRJ0835-4510是目前已有跃变脉冲星活动参数最高的,PSRJ1341-62220的跃变活动最频繁,而PSRJ1614-5047在1995年发生的跃变是规模最大的,不同脉冲星的跃变事件  相似文献   

18.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

19.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

20.
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar-gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906−49; here we report on non-detections of PWNe towards PSRs B1046−58, B1055−52, B1610−50 and J1105−6107. Our radio observations of the field around PSR B1055−52 argue against previous claims of an extended X-ray and radio PWN associated with the pulsar. If these pulsars power unseen, compact radio PWNe, upper limits on the radio flux indicate that a fraction of less than 10−6 of their spin-down energy is used to power this emission. Alternatively, PSRs B1046−58 and B1610−50 may have relativistic winds similar to other young pulsars and the unseen PWN may be resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local interstellar medium (ISM) density of 2.2×10−3 and 1×10−2 cm−3, respectively. Furthermore, we derive the spatial velocities of these pulsars to be ∼450 km s−1 and thus rule out the association of PSR B1610−50 with supernova remnant (SNR) G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号