首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An analytical model for describing the propagation and attenuation of Rayleigh waves along the free surface of an elastic porous medium containing two immiscible, viscous, compressible fluids is developed in the present study based on the poroelastic equations formulated by Lo et al. [Lo WC, Sposito G, Majer E. Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 2005;41:W02025]. The dispersion equation obtained is complex-valued due to viscous dissipation resulting from the relative motion of the solid to the pore fluids. As an excitation frequency is stipulated, the dispersion equation that is a cubic polynomial is numerically solved to determine the phase speed and attenuation coefficient of Rayleigh waves in Columbia fine sandy loam permeated by an air–water mixture. Our numerical results show that, corresponding to three dilatational waves, there is also the existence of three different modes of Rayleigh wave in an unsaturated porous medium, which are designated as the R1, R2, and R3 waves in descending order of phase speed, respectively. The phase speed of the R1 wave is non-dispersive (frequency-independent) in the frequency range we examined (10 Hz–10 kHz) and decreases as water saturation increases, whose magnitude ranges from 20% to 49% of that of the first dilatational wave with respect to water content. However, it is revealed numerically that the R2 and R3 waves are functions of excitation frequency. Given the same water saturation and excitation frequency, the phase speeds of the R2 and R3 waves are found to be approximately 90% of those of the second and third dilatational waves, respectively. The R1 wave has the lowest attenuation coefficient whereas the R3 wave attenuates highest.  相似文献   

2.
本文综合考虑了在波传播过程中孔隙介质的三种重要力学机制——"Biot流动机制一squirt流动机制-固体骨架黏弹性机制",借鉴等效介质思想,将含水饱和度引入波动力学控制方程,并考虑了不同波频率下孔隙流体分布模式对其等效体积模量的影响,给出了能处理含粘滞性非饱和流体孔隙介质中波传播问题的黏弹性Biot/squirt(BISQ)模型。推导了时间-空间域的波动力学方程组,由一组平面谐波解假设,给出频率-波数域黏弹性BISQ模型的相速度和衰减系数表达式。基于数值算例分析了含水饱和度、渗透率与频率对纵波速度和衰减的影响,并结合致密砂岩和碳酸盐岩的实测数据,对非饱和情况下的储层纵波速度进行了外推,碳酸盐岩储层中纵波速度对含气饱和度的敏感性明显低于砂岩储层。  相似文献   

3.
The strong coupling of applied stress and pore fluid pressure, known as poroelasticity, is relevant to a number of applied problems arising in hydrogeology and reservoir engineering. The standard theory of poroelastic behavior in a homogeneous, isotropic, elastic porous medium saturated by a viscous, compressible fluid is due to Biot, who derived a pair of coupled partial differential equations that accurately predict the existence of two independent dilatational (compressional) wave motions, corresponding to in-phase and out-of-phase displacements of the solid and fluid phases, respectively. The Biot equations can be decoupled exactly after Fourier transformation to the frequency domain, but the resulting pair of Helmholtz equations cannot be converted to partial differential equations in the time domain and, therefore, closed-form analytical solutions of these equations in space and time variables cannot be obtained. In this paper we show that the decoupled Helmholtz equations can in fact be transformed to two independent partial differential equations in the time domain if the wave excitation frequency is very small as compared to a critical frequency equal to the kinematic viscosity of the pore fluid divided by the permeability of the porous medium. The partial differential equations found are a propagating wave equation and a dissipative wave equation, for which closed-form solutions are known under a variety of initial and boundary conditions. Numerical calculations indicate that the magnitude of the critical frequency for representative sedimentary materials containing either water or a nonaqueous phase liquid is in the kHz–MHz range, which is generally above the seismic band of frequencies. Therefore, the two partial differential equations obtained should be accurate for modeling elastic wave phenomena in fluid-saturated porous media under typical low-frequency conditions applicable to hydrogeological problems.  相似文献   

4.
波在飽水孔隙弹性介貭中的传播   总被引:3,自引:0,他引:3       下载免费PDF全文
一、引言弹性体中波的传播問題迄今已有較广泛的研究.对飽水孔隙弹性介貭中波的传播問題研究的尚少。但此种問題在地球物理、地震、土木工程和声学等研究中均有重要意义.  相似文献   

5.
The phenomenon of reflection and transmission of plane harmonic waves at the plane interface between two dissimilar poroelastic solids saturated with two immiscible viscous fluids is investigated. Both porous media are considered dissipative due to the presence of viscosity in pore‐fluids. Four attenuated (three dilatational and one shear) waves propagate in such a dissipative porous medium. A finite non‐dimensional parameter is used to define the effective connections between the surface‐pores of two media at their common interface. Another finite parameter represents the gas‐share in the saturation of pores. An attenuated wave in a dissipative medium is described through the specification of directions of propagation and maximum attenuation. A general representation of an attenuated wave is defined through its inhomogeneous propagation, i.e., different directions for propagation and attenuation. Incidence of an inhomogeneous wave is considered at the interface between two dissipative porous solids. This results in four reflected and four transmitted inhomogeneous waves. Expressions are derived for the partition of incident energy among the reflected and transmitted waves. Numerical examples are studied to determine the effects of saturating pore fluid, frequency, surface‐pore connections and wave inhomogeneity on the strengths of reflected and transmitted waves. Interaction energy due to the interference of different (inhomogeneous) waves is calculated in both the dissipative porous media to verify the conservation of incident energy.  相似文献   

6.
粘性可压缩流体中的波   总被引:4,自引:2,他引:4       下载免费PDF全文
本文在小扰动条件下,从粘性可压缩流体的运动方程、状态方程以及连续性方程导出了它的波动方程,从而表明粘性可压缩流体中能够存在有耗损的纵波与横波。文中还针对自由界面、刚性界面、粘性流体内部分界面、粘性流体与弹性固体分界面等,求出了平面波的反射系数和透射系数。  相似文献   

7.
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

8.
The long-wavelength propagation and attenuation characteristics of three geological structures that frequently occur in reservoir environments are investigated using a theoretical model that consists of a stack of fine and viscoelastic plane layers, with the layers being either solid or fluid. Backus theory properly describes fine layering and a set of fluid-filled microfractures, under the assumption that interfaces between different materials are bonded. The effects of saturation on wave attenuation are modelled by the relative values of the bulk and shear quality factors. The anisotropic quality factor in a fine-layered system shows a variety of behaviours depending on the saturation and velocities of the single constituents. The wave is less attenuated along the layering direction when the quality factors are proportional to velocity, and vice versa when inversely proportional to velocity. Fractured rocks have very anisotropic wavefronts and quality factors, in particular for the shear modes which are strongly dependent on the characteristics of the fluid filling the microfractures. When the size of the boundary layer is much smaller than the thickness of the fluid layer, the stack of solid-fluid layers becomes a layered porous media of the Biot type. This behaviour is caused by the slip-wall condition at the interface between the solid and the fluid. As in Biot theory, there are two compressional waves, but here the medium is anisotropic and the slow wave does not propagate perpendicular to the layers. Moreover, this wave shows pronounced cusps along the layering direction, like shear waves in a very anisotropic single-phase medium.  相似文献   

9.
Propagation of harmonic plane waves is studied in a patchy-saturated porous medium. Patchy distribution of the two immiscible fluids is considered in a porous frame with uniform skeletal properties. A composition of two types of patches, connected through continuous paths, constitutes a double-porosity medium. Different compressibilities of pore-fluids in two porous phases facilitate the wave-induced fluid-flow in this composite material. Constitutive relations are considered with frequency-dependent complex elastic coefficients, which define the dissipative behaviour of porous aggregate due to the flow of viscous fluid in connected patches. Relevant equations of motion are solved to explain the propagation of three compressional waves and one shear wave in patchy-saturated porous solids. A numerical example is solved to illustrate dispersion in phase velocity and quality factor of attenuated waves in patchy-saturated porous materials. Role of fluid–solid inertial coupling in Darcy's law is emphasized to keep a check on the dispersion of wave velocities in the porous composite. Effects of patchy saturation on phase velocities and quality factors of attenuation are analysed using the double-porosity formulation as well as the reduced single-porosity equivalents.  相似文献   

10.
声波在两种多孔介质界面上的反射和透射   总被引:11,自引:1,他引:11       下载免费PDF全文
本文导出了声波在两种多孔介质界面上反射、透射的一般计算公式.作为例子,数值计算了P1波入射于界面时,P1、P2和S波的反射、透射系数与声波频率、入射角等量之间的关系.结果表明,各种模式波的反射、透射系数与入射角、多孔介质性质有关,在Biot特征频率附近与频率有关,并用界面两侧的法向能流相等验证了结果的正确性.若把多孔介质当作均匀固体处理,将会得到显著不同的结果.  相似文献   

11.
The study of the poroelastic behavior of sedimentary materials containing two immiscible fluids in response to either applied stress or pore pressure change in a quasistatic limit, i.e., negligible second time-derivatives, is of great importance to many hydrogelogical problems, e.g., land subsidence caused by withdrawal of subsurface fluids. The poroelasticity models developed for analyzing these problems feature partial differential equations that are coupled in the terms describing viscous damping and strain field. To determine closed-form analytical solutions for induced volumetric strain (dilatation) of the solid framework and its interaction with fluid flows, the choice of normal coordinates whose transformation can be performed to decouple these poroelastic equations is highly desirable. In this paper, we show that normal coordinates for decoupling these equations are real-valued and equal to three different linear combinations of the dilatations of the solid and the fluids (or equivalently, three different linear combinations of two individual fluid pressures and solid dilatation). In contrast to fully saturated porous media, it is found that the viscous damping effect must be represented in normal coordinates in the presence of the second fluid. The resulting decoupled equations representing independent motional modes are a Laplace equation and two diffusion equations, which can be solved analytically under a variety of initial and boundary conditions. Thus, after inverse transformation of normal coordinates is performed, the closed-form analytical solutions for induced solid volumetric strain and excess pore fluid pressures can be obtained simultaneously from our decoupled partial differential equations.  相似文献   

12.
In this paper, the solution of the system of homogeneous Biot equations, which was derived by Biot for the displacement vectors of plane monochrome elastic waves propagating in a homogeneous infinite two-phase medium, is expanded to the case where the propagation area of the elastic waves is limited and the wavefront is a piecewise smooth curved surface. It is shown that the arbitrary system of homogeneous Biot equations for the displacement vectors of the solid and liquid phases can be reduced to three different equations pertaining to the class of Helmholtz equations. From this, irrespective of the geometry of the seismic wavefront and the boundaries of the studied two-phase medium, there is the following. (1) Each displacement vector (of the solid and liquid phase) splits into three independent vectors satisfying three different Helmholtz equations. Two of these vectors correspond to the two types of compressional waves, namely, fast waves (waves of the first kind) and slow waves (waves of the second kind). The third vector describes shear waves. (2) The similar (related to the same wave type) components of the displacement vector in the solid and liquid phases satisfy the same Helmholtz equation and are linked with each other through a corresponding scalar factor that is expressed in terms of the coefficients of the Biot equations. Taking into account the established properties of the displacement vectors in the solid and liquid phases seems to be helpful in the problems dealing with calculation of elastic fields of arbitrary sources in piecewise-homogeneous two-phase media.  相似文献   

13.
Predicting the shear‐wave (S‐wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low‐frequency approximation, the classical Biot–Gassmann theory relates the Biot coefficient to the bulk modulus of water‐saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S‐wave velocity can be calculated. The Biot coefficient derived from the compressional‐wave (P‐wave) velocity of water‐saturated sediments often differs from and is less than that estimated from the S‐wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P‐wave velocities of water‐saturated sediments measured at various differential pressures, an accurate method of predicting S‐wave velocities is proposed. Numerical results indicate that the predicted S‐wave velocities for consolidated and unconsolidated sediments agree well with measured velocities.  相似文献   

14.
Velocity and attenuation of compressional waves in nearly saturated soils   总被引:1,自引:0,他引:1  
Based on the two-phase theory of Biot, we present exact and approximate expressions for the velocity and attenuation of compressional waves within nearly saturated poroelastic media. We use the approximate solutions to model the low-frequency compressional waves within nearly saturated soils. The model accounts for the effective stress, degree of saturation, and void ratio, and is capable of describing experimental results on Ottawa sand. The three-phase theory of Vardoulakis and Beskos and the two-phase theory of Biot similarly describe the velocity and attenuation of compressional waves in most soils. However, the former theory breaks down for nearly saturated gravels and dense sands.  相似文献   

15.
Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms.In the Biot theory,energy loss only includes the frictional dissipation between the solid phase and the fluid phase,resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range.To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band,we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism,and finally propose a new wave propagation model.Unlike the Biot model,the proposed model includes the intrinsic dissipation of the solid frame.We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P-and S-waves using several numerical experiments.Furthermore,we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model.The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range.  相似文献   

16.
非常规油气藏(如致密性地层及蕴藏油气的页岩地层)的重要特征是低孔、低渗,但裂隙或裂缝比较发育.为满足非常规勘探的需求,本文将孔、裂隙介质弹性波传播理论应用于多极子声波测井的井孔声场模拟,重点研究了致密介质中裂隙发育时多极子声波的传播机理以及衰减特征.井孔声场的数值计算结果表明裂隙的存在明显改变了弹性波和井孔模式波的频散、衰减和激发强度,尤其是井壁临界折射纵波的激发谱的峰值随着频率的增加逐渐降低,这与应用经典的Biot理论下的计算结果相反,且裂隙的存在也使得饱含水和饱含气时临界折射纵波激发强度的差异变大.井孔模式波的衰减与地层横波衰减和井壁流体交换有关,井壁开孔边界下致密地层裂隙发育还使得井孔斯通利波和艾里相附近的弯曲波对孔隙流体的敏感性增强,在井壁闭孔边界条件下引起井孔模式波衰减的主要因素是裂隙引起的地层横波衰减造成的,且在截止频率附近弯曲波的衰减与地层的横波衰减一致.数值计算结果为解释非常规油气地层的声学响应特征提供了参考.  相似文献   

17.
The simplified macro‐equations of porous elastic media are presented based on Hickey's theory upon ignoring effects of thermomechanical coupling and fluctuations of porosity and density induced by passing waves. The macro‐equations with definite physical parameters predict two types of compressional waves (P wave) and two types of shear waves (S wave). The first types of P and S waves, similar to the fast P wave and S wave in Biot's theory, propagate with fast velocity and have relatively weak dispersion and attenuation, while the second types of waves behave as diffusive modes due to their distinct dispersion and strong attenuation. The second S wave resulting from the bulk and shear viscous loss within pore fluid is slower than the second P wave but with strong attenuation at lower frequencies. Based on the simplified porous elastic equations, the effects of petrophysical parameters (permeability, porosity, coupling density and fluid viscosity) on the velocity dispersion and attenuation of P and S waves are studied in brine‐saturated sandstone compared with the results of Biot's theory. The results show that the dispersion and attenuation of P waves in simplified theory are stronger than those of Biot's theory and appear at slightly lower frequencies because of the existence of bulk and shear viscous loss within pore fluid. The properties of the first S wave are almost consistent with the S wave in Biot's theory, while the second S wave not included in Biot's theory even dies off around its source due to its extremely strong attenuation. The permeability and porosity have an obvious impact on the velocity dispersion and attenuation of both P and S waves. Higher permeabilities make the peaks of attenuation shift towards lower frequencies. Higher porosities correspond to higher dispersion and attenuation. Moreover, the inertial coupling between fluid and solid induces weak velocity dispersion and attenuation of both P and S waves at higher frequencies, whereas the fluid viscosity dominates the dispersion and attenuation in a macroscopic porous medium. Besides, the heavy oil sand is used to investigate the influence of high viscous fluid on the dispersion and attenuation of both P and S waves. The dispersion and attenuation in heavy oil sand are stronger than those in brine‐saturated sandstone due to the considerable shear viscosity of heavy oil. Seismic properties are strongly influenced by the fluid viscosity; thus, viscosity should be included in fluid properties to explain solid–fluid combination behaviour properly.  相似文献   

18.

The system of Biot vector equations in the frequency space includes two elliptic-type vector partial differential equations with unknown displacement vectors in the solid and liquid phases. Considering the Biot equations, alongside with Pride’s equations, the key approaches to the theoretical study of the elastic waves in the two-phase fluid-saturated media, the author suggests an analytical solution for the inhomogeneous Biot equations in the frequency space, which is reduced to finding its fundamental solution (Green’s function). The solution of this problem consists of solutions for two systems of Biot equations. In the first system, only the first equation is inhomogeneous, while in the second system, only the second equation is inhomogeneous and, as it is shown, its right-hand side is exclusively a potential function. The fundamental solution of the full system of inhomogeneous Biot equations (in which both equations are inhomogeneous) is represented in the form of Green’s matrix-tensor, for the scalar elements of which the analytical relations are presented. The obtained formulas describing the elastic displacements of both the solid and liquid phases reflect three wave types, namely, compressional waves of the first and the second kind (the fast and the slow waves, respectively) and shear waves. Similar terms (those describing the same type of the elastic waves in the solid and liquid phases) in the expressions for Green’s functions are linked with each other through the coefficient that links the components of the displacement vectors of the solid and liquid phases corresponding to the given wave type.

  相似文献   

19.
An analytical transient solution is obtained for propagation of compressional waves in a homogeneous porous dissipative medium. The solution, based on a generalization of Biot's poroelastic equations, holds for the low- and high-frequency ranges, and includes viscoelastic phenomena of a very general nature, besides the Biot relaxation mechanism. The viscodynamic operator is used to model the dynamic behaviour associated with the relative motion of the fluid in the pores at all frequency ranges. Viscoelasticity is introduced through the standard linear solid which allows the modelling of a general relaxation spectrum. The solution is used to study the influence of the material properties, such as bulk moduli, porosity, viscosity, permeability and intrinsic attenuation, on the kinematic and dynamic characteristics of the two compressional waves supported by the medium. We also obtain snapshots of the static mode arising from the diffusive behaviour of the slow wave at low frequencies.  相似文献   

20.
The system of Biot vector equations in the frequency space includes two elliptic-type vector partial differential equations with unknown displacement vectors in the solid and liquid phases. Considering the Biot equations, alongside with Pride??s equations, the key approaches to the theoretical study of the elastic waves in the two-phase fluid-saturated media, the author suggests an analytical solution for the inhomogeneous Biot equations in the frequency space, which is reduced to finding its fundamental solution (Green??s function). The solution of this problem consists of solutions for two systems of Biot equations. In the first system, only the first equation is inhomogeneous, while in the second system, only the second equation is inhomogeneous and, as it is shown, its right-hand side is exclusively a potential function. The fundamental solution of the full system of inhomogeneous Biot equations (in which both equations are inhomogeneous) is represented in the form of Green??s matrix-tensor, for the scalar elements of which the analytical relations are presented. The obtained formulas describing the elastic displacements of both the solid and liquid phases reflect three wave types, namely, compressional waves of the first and the second kind (the fast and the slow waves, respectively) and shear waves. Similar terms (those describing the same type of the elastic waves in the solid and liquid phases) in the expressions for Green??s functions are linked with each other through the coefficient that links the components of the displacement vectors of the solid and liquid phases corresponding to the given wave type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号