首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present data from a proglacial river in Iceland that exhibits very different sedimentological characteristics when compared to its alpine counterparts. The braidplain is characterised by coarse outburst gravels that inhibit sediment transport and channel change. Bedload transport is restricted to the movement of fine-grained gravels that pass through the channel system without promoting significant changes in channel geometry. Bar forms are erosional features, inherited from the last major peak flow, rather than depositional in nature. On the basis of our observations we conclude that braidplain morphology is controlled by low frequency, high magnitude flow events, possibly associated with glacial outburst floods. This is in marked contrast to process-form relationships in more dynamic alpine proglacial channels that are characterised by high rates of sediment transport and channel change.  相似文献   

2.
Abstract In the Latnjavagge drainage basin (68°21′N, 18°29′E), an arctic‐oceanic periglacial environment in northernmost Swedish Lapland, the fluvial sediment transport and the characteristics and importance of high‐magnitude/low‐frequency fluvial events generated by intense snowmelt or heavy rainfall have been investigated and compared with snowmelt‐ and rainfall‐induced discharge peaks in the Levinson‐Lessing Lake basin (Krasnaya river system) on the Taimyr Peninsula, an arctic periglacial environment in northern Siberia (74°32′N, 98°35′E). In Latnjavagge (9 km2) the intensity of fluvial sediment transport is very low. Most of the total annual sediment load is transported in a few days during snowmelt generated runoff peaks. Due to the continuous and very stable vegetation covering most areas below 1300 m a.s.l. in the Latnjavagge catchment, larger rainfall events are of limited importance for sediment transport in this environment. Compared to that, in the c. 40 times larger Krasnaya riversystem rainfall‐generated runoff peaks cause significant sediment transport. The main sediment sources in the Latnjavagge drainage basin are permanent ice patches, channel debris pavements mobilized during peak discharges and exposing fines, and material mobilized by slush‐flows. In the Krasnaya river system river bank erosion is the main sediment source. In both periglacial environments more than 90% of the annual sediment yield is transported during runoff peaks. The results from both arctic periglacial environments underline the high importance of high‐magnitude/low‐frequency fluvial events for the total fluvial sediment budgets of periglacial fluvial systems. Restricted sediment availability is in both arctic environments the major controlling factor for this behaviour.  相似文献   

3.
This paper assesses river channel management activities in the context of the interaction between coarse sediment delivery, climate change, river channel response and flood risk. It uses two main sources of evidence: (1) an intensive instrumentation of an upland river catchment using both traditional hydrometric and novel sediment sensing methods; and (2) a sediment delivery model that combines a treatment of sediment generation from mass failure with a treatment of the connectivity of this failed material to the drainage network. The field instrumentation suggests that the precipitation events that deliver sediment from hillslopes to the drainage network are different to those that transfer sediment within the network itself. Extreme events, that could occur at any time in the year (i.e. they are not dependent on wet antecedent conditions), were crucial for sediment delivery. However, sustained high river flows were responsible for the majority of transfer within the river itself. Application of three downscaling methods to climate model predictions for the 2050s and 2080s suggested a significant increase in the number and potential volume of delivery events by the 2050s, regardless of the climate downscaling scenario used. First approximations suggested that this would translate into annual bed level aggradation rates of between 0.10 and 0.20 m per year in the downstream main channel reaches. Second, the importance of this delivery for flood risk studies was confirmed by simulating the effects of 16 months of measured in-channel simulation with river flows scaled for climate change to the 2050s and 2080s. Short-term sedimentation could result in similar magnitude increases in inundated area for 1 in 0.5 and 1 in 2 year floods to those predicted for the 2050s in relation to increases in flow magnitude. Finally, we were able to develop an alternative approach to river management in relation to coarse sediment delivery, based upon reducing the rates of coarse sediment delivery through highly localised woodland planting, under the assumption that reducing delivery rates should reduce the rate of channel migration and hence the magnitude of the bank erosion problem. Thus, the paper demonstrates the need to conceptualise local river management problems in upland river environments as point scale manifestations of a diffuse sediment delivery process, with a much more explicit focus on the catchment scale, if our river systems are to become more insulated from the impacts of future climate changes.  相似文献   

4.
This paper presents a GIS-based mathematical model for the simulation of floodplain sedimentation. The model comprises two components: (1) the existing hydrodynamic WAQUA model that calculates two-dimensional water flow patterns; and (2) the SEDIFLUX model that calculates deposition of sediment based on a simple mass balance concept with a limited number of model parameters. The models were applied to simulate floodplain sediment deposition over river reaches of several kilometres in length. The SEDIFLUX model has been calibrated and validated using interpolated raster maps of sediment deposition observed after the large magnitude December 1993 flood on the embanked floodplain of the lower river Rhine in the Netherlands. The model appeared to be an adequate tool to predict patterns of sediment deposition as the product of the complex interaction among river discharge and sediment concentration, floodplain topography, and the resulting water flow patterns during various discharge levels. In the investigated areas, the resulting annual average sedimentation rates varied between 0.5 mm/year and 4.0 mm/year. The role of the most important mechanisms governing the spatial patterns of overbank deposition, i.e. inundation frequency, sediment load, floodplain topography and its influence on the flow patterns over the floodplain, are discussed.  相似文献   

5.
北洛河下游河槽形成与输沙特性   总被引:8,自引:0,他引:8  
齐璞  孙赞盈 《地理学报》1995,50(2):168-177
北洛河发湖泊于黄河粗沙来源区,年均含沙量达128kg/m^3年均流量仅25m^3.s,是典型的多沙河流,但由于泥沙主要由高含沙洪水输送,平水流量小,含沙量低,经常保持窄深稳定河槽,使高含沙洪水挟带的泥沙能顺利输送而不淤,并形成弯曲性河流。  相似文献   

6.
The Malnant River is a rapidly incising river with a French name that translates as “bad creek,” reflecting local opinion of the hazards from dramatic channel changes that have occurred in the last few centuries. Downcutting in the last three decades has created severe problems for farmers in this small watershed (16 km2) as bridges are undermined, streamside roads are threatened, and irrigation diversion structures are rendered unusable. The purpose of our study was to determine the extent and causes of downcutting. A detailed landcover map dated 1732 revealed that forest cover had been reduced by that time to 10% of the present-day cover. The Malnant was strongly affected by floods and debris torrents during the 18th and 19th centuries that delivered massive amounts of sediment. During the 20th century, reforestation reduced the sediment delivery from hillslopes. In addition, gravel extraction in the Malnant and in the Fier River (of which the Malnant is a tributary) has lowered the base level for the river. This initiated a knickpoint that moved upstream. Weirs placed in the Malnant in 1968 were used to measure rates of bed incision in the field. With a mean width of 4.0 m and degradation up to 36 cubic meters per meter channel length, the lower 4.5 km of the Malnant has experienced a net loss of approximately 163,000 m3 of bed material. Above the 4.5-km point on the Malnant, bedrock controls exist that have arrested the upstream-progressing degradation.  相似文献   

7.
Ellen Wohl  David Dust 《Geomorphology》2012,138(1):329-338
Since 1974, flow releases from Long Draw Reservoir have increased annual peak flows on La Poudre Pass Creek, Colorado, from ~ 5.6 m3/s to > 8.4 m3/s. The creek drains 61 km2 and channel morphology varies from step-pool to pool-riffle. Comparison of five channel reaches along the creek to channel reaches along neighboring rivers without flow regulation indicates that channel width has increased by as much as a factor of three along La Poudre Pass Creek. Width-to-depth ratio has also increased, the bed material in step-pool channel reaches has coarsened, and residual pool volumes have increased in pool-riffle channel reaches. Pool-riffle channel reaches have undergone the greatest change in response to flow augmentation. Although discharge has increased consistently for all five channel reaches, morphologic response varies in relation to gradient and channel morphology, making it impractical to precisely predict a priori the magnitude of channel response to flow augmentation.  相似文献   

8.
长江上游重点产沙区产沙量对人类活动的响应   总被引:13,自引:2,他引:11  
许炯心  孙季 《地理科学》2007,27(2):211-218
对金沙江屏山站、嘉陵江北碚站、宜昌站20世纪50年代以来的输沙量和含沙量进行分析。结果表明,在年径流量相同的情况下,由于大规模矿山、钢铁工业、交通建设增加水土流失,屏山站1976~1996年年产沙量要高于1954~1976年。与此相反,由于修筑水库、塘坝拦沙,修建梯田、恢复植被减少侵蚀,北碚站1983~1996年年产沙量要大大低于1954~1982年;宜昌站1985~1996年年产沙量也低于1954~1984年。北碚、宜昌两站都存在一个使水利、水土保持减沙量为0的年径流量临界值,北碚站和宜昌站这一临界值分别为1142×108m3和4800×108m3。  相似文献   

9.
The construction of multiple dams and barrages in many Indian River basins over the last few decades significantly reduced river flow to the sea and affected the sediment regime. More reservoir construction is planned through the proposed National River Linking Project (NRLP), which will transfer massive amounts of water from the North to the South of India. The impacts of these developments on fertile and ecologically sensitive deltaic environments are poorly understood and quantified at present. In this paper an attempt is made to identify, locate and quantify coastal erosion and deposition processes in one of the major river basins in India—the Krishna—using a time series of Landsat images for 1977, 1990 and 2001 with a spatial resolution ranging from 57.0 m to 28.5 m. The dynamics of these processes are analyzed together with the time series of river flow, sediment discharge and sediment storage in the basin. Comparisons are made with similar processes identified and quantified earlier in the delta of a neighboring similarly large river basin—the Godavari. The results suggest that coastal erosion in the Krishna Delta progressed over the last 25 years at the average rate of 77.6 ha yr− 1, dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.  相似文献   

10.
Changes in channel morphology provide relevant insights into sediment transport and deposition in alluvial river systems. This study assessed three to four decades of morphological changes at seven locations along a 327-km reach of the Lower Mississippi River (LMR) to better understand channel adjustment processes of this large alluvial river. The assessment included analysis of three cross-sectional areas at each location during the period 1992–2013, as well as analysis of the changes in river stage and maximum surface slopes under four flow conditions over the last three to four decades . We found that the first 20–25 km LMR reach below its diversion to the Atchafalaya River and the reach from 80 to 140 km experienced significant riverbed aggradation, while the reach in between (i.e. from 20 to 80 km) experienced riverbed degradation. The lower 187-km reach (i.e. from 140 to 327 km) showed negligible sediment trapping. These findings may have relevant implications for management of river sediment diversions along the LMR and other large alluvial rivers in the world.  相似文献   

11.
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.  相似文献   

12.
In arid regions of Central Asia, cyclicity in the humidification behavior of a region shows long-term trends of changes in the water levels of closed lakes. Thus, the last 10 years saw a decrease in the water level by several meters on one of the region’s largest lakes — Hulun Nur (PRC). For water level stabilization on the PRC’s territory, a package of measures is undertaken for a partial Hailar river flow transfer (in the upper reaches of the Argun’ river) to Lake Hulun Nur. It is obvious that the lake’s water level regime will experience substantial changes. This paper discusses a variety of consequences of the river flow transfer and different water management modes, and forecasts the lake’s possible level regime, the Argun’ river discharge and the ecological consequences of measures of this kind for the Russian part of the drainage basin.  相似文献   

13.
The study area is a portion of a coastal community that is adjacent to a salt marsh and tidal creek. The developed area was built upon wetlands, and like the marsh, it floods during spring tides and strong coastal storms. Following floods, little visual evidence of sedimentation is in the built area, prompting the hypothesis that physical characteristics of coastal development limit sediment availability during floods and reduce deposition. Because the area floods from a tidal creek during the same events that lead to inundation of the adjacent high marsh, salt marshes are used as an analogue system for planning this research. Although salt marsh geomorphology is a starting point, people are endogenous actors at this site who influence geomorphic evolution by changing the flow of naturally occurring energy. Suspended sediment levels or deposition were measured during 10 flooding events. Water samples were collected from the tidal creek, at a catchbasin, at another location in the street, and in the Spartina patens marsh. Sediment is found to be delivered to the street in the same quantities and for the same duration as in the salt marsh. Suspended sediment levels are alike throughout the research area. The amount of sediment that accumulates following coastal floods was measured by placing samplers within the street and the marsh. Highly significant differences in sediment accumulation exist between the environments. After a flood event, much less sediment is deposited in the street than in the marsh.  相似文献   

14.
Reunion Island is characterized by rapid landscape evolution resulting from its cyclonic tropical climate. However, local active surface processes are not well understood. The relationships between climatic events, large scale landslides and torrential transport of sediment by the rivers remain unclear. The Remparts River is an appropriate area for studying such geomorphological processes, as it deeply incises the active Piton de la Fournaise volcano. In this study, different approaches are used to analyze the morphological evolution of the river from the sediment production areas to the outlet over the last 40 years. Recurrent events of huge mass wasting occur at Mahavel Cliff, upstream of one of the river tributaries, the most recent producing around 50×106 m3 of sediment in 1965. Combined analyses of the sequence of cyclonic events, major mass wasting events and aerial photography interpretation over the last 40 years led to the proposal of a functional model of river system responses to these events. The river system can be divided into three compartments, each affected by three classes of geomorphological events. The sedimentary response (erosion and/or aggradation) of each compartment to a triggering event, such as cyclonic rainfall and/or seasonal rise of water discharge, is controlled both by the magnitude of the climatic event and by the state of the compartment resulting from previous evolution. A set of five aerial photographs and a satellite image showing the evolution of the studied area during the last 40 years are examined in detail in the light of the functional model. Observations confirm a rapid and complex evolution of the river bed (erosion and aggradation), and provide information about the dynamics of the sediment transfer from the production areas to the ocean. Analysis of two distinct topographic datasets bracketing the last major cyclone Dina in 2002 allows the estimation of the river sediment budget resulting from this event. The net volume of aggraded sediments in the river bed is estimated at around 8×106 m3.With no major collapse event recorded at Mahavel Cliff, sediment transfer due to the flood associated with the 3-day cyclone Dina event is responsible for this significant increase in river bed sediment volume. This quantification shows that several million cubic meters of sediment may take only a few years to spread over more than 5 km downstream. The river bed has now reached its highest elevation since the 1965 landslide, with potential consequences for natural hazards in the area of the outlet at the city of Saint-Joseph.  相似文献   

15.
大型水库的兴建深刻改变了下游水沙输移特点,进而导致河床演变规律显著调整,水库下游弯曲河型对水沙过程改变响应敏感,是水库下游河床演变、航道整治、河势控制等方面研究的关键区域。本文基于1996-2016年的实测水文、地形资料,对长江三峡水库下游弯曲河型的演变规律及其驱动机制开展研究,结果表明:① 三峡水库蓄水前,下荆江存在“凸淤凹冲”、“凸冲凹淤”两类弯曲河型,而三峡水库蓄水后均表现为“凸冲凹淤”的一致性规律;② 在水库拦沙作用的影响下,下荆江河段平滩河槽存在累积性冲刷现象,冲刷部位集中于枯水河槽与基本河槽之间的低滩,冲淤部位调整主要由变化的流量过程所驱动,上游河势、河道边界以及支流入汇等因素均有一定驱动作用;③ 在三峡水库蓄水后缺乏大洪水的情况下,凸岸水流挟沙力随流量增加逐渐增强,水流对凸岸冲蚀力度在平滩流量级附近(20000~25000 m3/s)达到最强,平滩流量附近流量级的持续时间超过20天时,弯曲河道发生凸冲凹淤现象。而悬沙中造床粗沙的减少,增强了水流冲刷强度,加剧了凸岸的冲蚀程度。  相似文献   

16.
赣江入湖三角洲上的网状河流体系研究   总被引:6,自引:0,他引:6  
王随继 《地理科学》2002,22(2):202-207
中国南方的冲积河流有许多属于分汊河流,这已被许多研究者进行过比较深入的分析研究,但赣江在其入湖三角洲上的多河道体系与分汊河道有着明显的不同,它的形成是河流自发调整的结果,而不象分汊河流那样由节点控制。它具有网状河流所具有的地貌和沉积物特征,属于典型的网状河流体系。虽然是低含沙河流,但由于其水动力较弱及汛期基准面的上升,洪泛频繁,可输入河间地以大量的泥沙并在低能环境中发生沉积,使河道及河间地能够协调加积升高,并维持多河道体系的稳定性。  相似文献   

17.
The Indus drainage has experienced major variations in climate since the Last Glacial Maximum (LGM) that have affected the volumes and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first‐order source‐to‐sink budget spanning the time since the LGM. We show that buffering of sediment in the floodplain accounts for ca. 20–25% of the mass flux. Sedimentation rates have varied greatly and must have been on average three times the recent, predamming rates. Much of the sediment was released by incision of fluvial terraces constructed behind landslide dams within the mountains, and especially along the major river valleys. New bedrock erosion is estimated to supply around 45% of the sedimentation. Around 50% of deposited sediment lies under the southern floodplains, with 50% offshore in large shelf clinoforms. Provenance indicators show a change of erosional focus during the Early Holocene, but no change in the Mid–Late Holocene because of further reworking from the floodplains. While suspended loads travel rapidly from source‐to‐sink, zircon grains in the bedload show travel times of 7–14 kyr. The largest lag times are anticipated in the Indus submarine fan where sedimentation lags erosion by at least 10 kyr.  相似文献   

18.
高含沙型曲流河床形成机理的初步研究   总被引:4,自引:3,他引:4  
许炯心 《地理学报》1992,47(1):40-48
本文描述了在我国黄土高原宽谷中发现的含沙量超过100kg/m^3的曲流河床,并运用高含沙水流的作用对其成因进行了探讨。指出当水流进入高含沙范围时,水流能耗率大幅度降低,挟沙能力大大增加,这是促使河床向弯曲发展的主要原因。由于高含沙水流的稳定输送有赖于边界条件,故边界条件在这种曲流河床的形成中起了重要的作用。文中并讨论了这一地区游荡河型与弯曲河型的判别条件。  相似文献   

19.
R. H. Kesel   《Geomorphology》2003,56(3-4):325
The Mississippi River is one of the most regulated rivers in the world. Human modifications constructed mainly after 1920 include dams and reservoirs, artificial levees, dikes, concrete revetments and a series of channel cutoffs. This paper examines some of the effects of these modifications on the channel and sediment budget of the river. In particular, the changes to the thalweg profile and the size of channel bars are examined in detail. It is concluded, that prior to the 1930s, when major modifications were introduced, the Lower Mississippi River was an aggrading meandering river. The role of the flood plain has also changed. Prior to modifications, the flood plain was the major sediment source as the result of bank caving. Today the flood plain provides only a minor amount of sediment. It can be shown that major degradation to the channel including the growth of channel bars has occurred as a result of these engineered modifications. The data also indicates that the different geomorphic regions respond to modifications in different ways.  相似文献   

20.
黄河内蒙古段异源水沙输移特性   总被引:1,自引:1,他引:0  
彭文昌  李永山 《中国沙漠》2016,36(3):805-813
河流悬移质泥沙的输移方式按照水沙来源可以分为水沙同源与水沙异源两大类。黄河内蒙古段水沙来自不同的区域,冲泻质泥沙主要来源于陇西黄土高原区,而径流则主要来自唐乃亥以上的山区,呈现异源特性。通过分析内蒙古河段石嘴山与巴彦高勒水文站1951-2003年的水文数据,发现期间共发生了13次大流量和29次高含沙事件且大流量、高含沙量同时出现现象很少,多呈现大流量、低含沙量,或者小流量、高含沙量的态式。同时,通过改变传统流量-含沙量幂函数公式Ci=aQb(Ci为悬移质浓度,Q为流量)的参数项,建立了2种水沙异源情况下流量-含沙量的公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号