首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
基于GIS的城市内涝预警预报系统设计与实现   总被引:1,自引:0,他引:1  
针对当前日益突出的城市内涝问题,研究开发了城市内涝预警预报系统。该系统对排水管网运行的相关参数与城区积水数据、排水管道水位信息、雨量信息以及河道水位等防汛信息数据在线监测,并实时传输到系统,当各项监测参数出现异常或超出系统设定的阈值,系统将会及时报警。同时,系统提供统一的调度平台,结合内涝与防汛数据,为管理决策提供完善的数据支持和调度平台。  相似文献   

2.
采用3维激光扫描技术快速采集滑坡体地形点云信息,并提取滑坡体微地貌信息,为滑坡监测提供基础技术支持。3维激光扫描技术的数据处理主要包括外业数据采集、点云数据配准、地貌数据获取与非地貌点云数据过滤、地形图生成等过程,并着重介绍其工作原理与处理方法。采用3维激光扫描技术能够高效准确实时的监测地质灾害,对预防灾害的发生提供了决策作用。  相似文献   

3.
因具备高速、灵活和高精度的特点,移动式激光扫描被广泛用于地铁隧道的监测系统中。针对现有数据处理方法的里程配准误差大、数据利用率低的问题,本文提出了从扫描到后处理的一体化数据转换方法。在预扫描阶段,对隧道进行预标定,根据速度曲线的概率密度确定噪声界限;在正式扫描阶段,标定小车匀速运动的开始计速点,仅在惯导速度超限的情况下更新里程;在后处理阶段,首次基于激光点云数据生成360°全景图用于病害监测,提高了用户交互性。试验结果表明,本文方法在50 m内的测量误差小于1.2 mm,优于已有的螺旋扫描方法。因此,本文方法更适用于传感器精度低,测量频率高,且监测隧道较长的移动式激光扫描系统。同时,生成的全景图为隧道病害监测提供新的发展方向。  相似文献   

4.
实时GIS时空数据模型   总被引:4,自引:0,他引:4  
为满足动态目标与传感器等实时观测数据获取、存储、管理、分析与可视化的要求,需要发展一种新型地理信息系统—实时GIS。本文根据实时GIS中各种地理要素的特点以及存贮管理要求,提出了一种面向动态地理对象与动态过程模拟的实时GIS时空数据模型,它将时空过程、地理对象、事件、事件类型、状态、观测等相关要素整合在一个时空数据模型中。基于该模型研发了新一代实时GIS,并以四种动态地理对象(包括移动对象、原位传感器对象、视频对象和过程模拟对象)的时空数据的实时接入、存储与可视化为例,验证的模型的可行性。  相似文献   

5.
目前常用的小光斑机载LiDAR波形数据与系统点云数据的来源相关性较大,波形数据的优势难以严格定量地评价和比较。LeicaALS60机载LiDAR系统记录的全波形数据与点云数据相对独立,点云数据来自硬件系统脉冲探测方法,而波形数据是未加处理的原始回波序列。本文对原始波形数据进行分解获取发射脉冲的全部回波,与系统探测点云进行了定量对比,并选取典型林区和城区数据,得到波形在两种地物类型中垂直信息获取能力的定量表征参数。结果表明,波形数据对不同地物类型均能丰富垂直结构信息和提高点云垂直分辨率,且这种提高在林区表现优于城区人工建筑和裸地;激光对树木冠层的穿透能力更明显地表现在回波波形信息中,相较于传统点云激光雷达,全波形LiDAR在森林垂直参数获取方面潜力更大。  相似文献   

6.
现场直播式地理空间信息服务的构思与体系   总被引:3,自引:0,他引:3  
在应急快速反应场合,现场空间位置信息、动态影像信息的实时采集、高效处理和便捷提供,已经成为地理空间信息服务的基本要求.以旋翼无人机(VTUAV)为平台的集成传感器实时探测、车载移动集群式高速处理和宽带无线网络信息发布为技术途径,本文构思一种地理空间信息直播服务(LGI)的样式和技术体系,结合典型应用的实际需求,具体分析...  相似文献   

7.
受外界环境和仪器设备等的影响,实时水位观测数据流噪声和数据异常问题突出,严重制约了实时应用效能。针对已有数据清洗方法适应性差,难以根据动态观测数据的变化特征进行动态调整问题,本文提出了一种水文变化语义约束的实时水位观测数据流在线滤波方法:在实时水位观测数据变化特征与水文时空过程动态演变规律之间建立高层语义映射,实现水文变化语义知识约束下的卡尔曼模型参数自适应调整,从而突破传统滤波方法的瓶颈。采用多种降雨情景下的实时水位观测数据进行了试验,证明了该方法结果质量的可靠性。  相似文献   

8.
针对当前物流运输业的发展需求,提出了基于北斗卫星导航系统的物流动态追溯系统设计方法。结合嵌入式技术、无线通讯技术和传感器技术,设计出了一种可以实时查询的物流动态追溯系统,使货物运输过程中的多种信息可以被实时监控。该系统具有精确获得位置信息、运输车轨迹显示和路径规划等多种功能,实际测试结果表明:该系统运行流畅,精度高且稳定性强。   相似文献   

9.
针对复杂区域探测困难、成本较高的问题,设计了一款基于全球卫星导航系统的具有自主巡航功能的环境探测四足爬行机器人及远程监测系统,该机器人以嵌入式STM32F429IGT6芯片作为主控CPU,搭载GPS/北斗定位模块及无线通讯模块,使机器人可以实现自主巡航和自动调节路线.该机器人配备的多种传感器模块可以实现对环境温湿度、风速等参数的采集,同时将收集到的数据进行分析、处理和发送.基于该功能开发的监测系统可以实现对机器人的实时监测,包括运动轨迹和位置信息,并通过无线网络对机器人发送控制指令,实现远程遥控功能.实验结果表明,该自主巡航机器人及其监测系统能够实现精确定位和路线实时调整,提高了机器人探测工作的精准性.   相似文献   

10.
基于TRMM数据与SPI指数的广西地区旱涝演变分析   总被引:1,自引:0,他引:1  
干旱是一种影响大、受灾重且恢复周期长的自然灾害,广西是农业大省,对广西地区进行干旱情况分析及预测对该地防灾减灾具有重要意义。通过对广西地区1998—2019年的降雨情况进行分析,并引入标准化降水指数(standardized precipitation index,SPI),验证了热带降雨测量卫星(tropical rainfall measuring mission,TRMM)数据在广西地区的适用性,研究了广西地区22 a间旱涝演变情况,并对未来广西地区旱涝变化趋势做出预测。结果表明:(1)TRMM 3B43降雨数据与地面台站实测数据具有高度相关性,适用于广西地区的干旱监测;(2)广西地区旱涝灾害频繁,平均每6 a就会有范围较大的洪涝事件发生;每2~3 a就会有范围较大的严重的干旱事件发生;(3)广西地区夏季降雨量最大,冬季最小,且降雨总体呈现"东多西少"的格局;(4)根据结果可以预测,2020年广西地区整体没有较大的干旱和洪涝事件发生,部分城市将会出现轻度洪涝和轻度干旱的情况。  相似文献   

11.
Flood disasters in Southeast Asia result in significant loss of life and economic damage. Remote sensing information systems designed to spatially and temporally monitor floods can help governments and international agencies formulate effective disaster response strategies during a flood and ultimately alleviate impacts to population, infrastructure, and agriculture. Recent destructive flood events in the Lower Mekong River Basin occurred in 2000, 2011, 2013, and 2016 (http://ffw.mrcmekong.org/historical_rec.htm, April 24, 2017).The large spatial distribution of flooded areas and lack of proper gauge data in the region makes accurate monitoring and assessment of impacts of floods difficult. Here, we discuss the utility of applying satellite-based Earth observations for improving flood inundation monitoring over the flood-prone Lower Mekong River Basin. We present a methodology for determining near real-time surface water extent associated with current and historic flood events by training surface water classifiers from 8-day, 250-m Moderate-resolution Imaging Spectroradiometer (MODIS) data spanning the length of the MODIS satellite record. The Normalized Difference Vegetation Index (NDVI) signature of permanent water bodies (MOD44W; Carroll et al., 2009) is used to train surface water classifiers which are applied to a time period of interest. From this, an operational nowcast flood detection component is produced using twice daily imagery acquired at 3-h latency which performs image compositing routines to minimize cloud cover. Case studies and accuracy assessments against radar-based observations for historic flood events are presented. The customizable system has been transferred to regional organizations and near real-time derived surface water products are made available through a web interface platform. Results highlight the potential of near real-time observation and impact assessment systems to serve as effective decision support tools for governments, international agencies, and disaster responders.  相似文献   

12.
洪涝灾害会造成农田淹没、居民住宅损毁等危害,因此对洪水淹没范围进行实时、准确监测可有效进行灾后治理。利用光学传感器提取洪水淹没范围时,不能穿透云层,因此无法获取有效地面信息;而SAR使用微波波段,不受天气影响,在夜间也能成像。因此,SAR成为洪水灾害灾情评估的有力工具。本文利用2021年9月23日、10月5日、10月17日3景SAR雷达影像Sentinel-1A数据,计算相干性系数,设置阈值为0.2,提取水体淹没范围,分析其扩张范围及变化趋势,并根据生成的形变图分析水位抬升变化,验证了基于雷达数据的相干系数阈值提取方法监测洪水淹没范围,以及采用InSAR技术准确提取水体边界与分析水位上升趋势的可行性。  相似文献   

13.
In this study, we present an approach to estimate the extent of large-scale coastal floods caused by Hurricane Sandy using passive optical and microwave remote sensing data. The approach estimates the water fraction from coarse-resolution VIIRS and ATMS data through mixed-pixel linear decomposition. Based on the water fraction difference, using the physical characteristics of water inundation in a basin, the flood map derived from the coarse-resolution VIIRS and ATMS measurements was extrapolated to a higher spatial resolution of 30 m using topographic information. It is found that flood map derived from VIIRS shows less inundated area than the Federal Emergency Management Agency (FEMA) flood map and the ground observations. The bias was mainly caused by the time difference in observations. This is because VIIRS can only detect flood under clear conditions, while we can only find some clear-sky data around the New York area on 4 November 2012, when most flooding water already receded. Meanwhile, microwave measurements can penetrate through clouds and sense surface water bodies under clear-or-cloudy conditions. We therefore developed a new method to derive flood maps from passive microwave ATMS observations. To evaluate the flood mapping method, the corresponding ground observations and the FEMA storm surge flooding (SSF) products are used. The results show there was good agreement between our ATMS and the FEMA SSF flood areas, with a correlation of 0.95. Furthermore, we compared our results to geotagged Flickr contributions reporting flooding, and found that 95% of these Flickr reports were distributed within the ATMS-derived flood area, supporting the argument that such crowd-generated content can be valuable for remote sensing operations. Overall, the methodology presented in this paper was able to produce high-quality and high-resolution flood maps over large-scale coastal areas.  相似文献   

14.
本文根据地物光谱特性和卫星的信号接收原理,提出了一种利用气象卫星识别水体的简单而有效的方法,使得薄云覆盖下的水体和云影中的水体得到较好的识别效果。在洪水监测中使用该方法,可以充分利用气象卫星数据获取丰富的洪水动态信息.并以1991年江淮洪涝灾害为背景,对试验结果进行了分析.  相似文献   

15.
Detecting and collecting public opinion via social media can provide near real-time information to decision-makers, which plays a vital role in urban disaster management and sustainable development. However, there has been little work focusing on identifying the perception and the sentiment polarity expressed by users during and after disasters, particularly regional flood events. In this article, we comprehensively analyze tweets data related to the “European floods in 2021” over time, topic, and sentiment, forming a complete workflow from data processing, topic modeling, sentiment analysis, and topic and sentiment prediction. The aim is to address the following research questions: (1) What are the public perception and main concerns during and after floods? (2) How does the public sentiment change during and after floods? Results indicate that there is a significant correlation between a flood's trend and the heat of corresponding tweets. The three topics that receive the most public concern are: (1) climate change and global warming; (2) praying for the victims: and (3) disaster situations and information. Negative sentiments are predominant during the floods and will continue for some time. We tested five different classifiers, of which TextCNN-attention turned out to deliver the best predictions in topic and sentiment prediction, and performed well for sparse flood tweets, it can be used to predict the topic and sentiment polarity of a single tweet in real-time during the flood events. Our findings can help disaster agencies to better understand the dynamics of social networks and develop stronger situational awareness towards a disaster, which can contribute to scientifically justified decision-making in urban risk management and also meet the challenges associated with the global sustainable development goal 11 (SDGs) on Sustainable Cities and Communities.  相似文献   

16.
Rapid flood mapping is critical for local authorities and emergency responders to identify areas in need of immediate attention. However, traditional data collection practices such as remote sensing and field surveying often fail to offer timely information during or right after a flooding event. Social media such as Twitter have emerged as a new data source for disaster management and flood mapping. Using the 2015 South Carolina floods as the study case, this paper introduces a novel approach to mapping the flood in near real time by leveraging Twitter data in geospatial processes. Specifically, in this study, we first analyzed the spatiotemporal patterns of flood-related tweets using quantitative methods to better understand how Twitter activity is related to flood phenomena. Then, a kernel-based flood mapping model was developed to map the flooding possibility for the study area based on the water height points derived from tweets and stream gauges. The identified patterns of Twitter activity were used to assign the weights of flood model parameters. The feasibility and accuracy of the model was evaluated by comparing the model output with official inundation maps. Results show that the proposed approach could provide a consistent and comparable estimation of the flood situation in near real time, which is essential for improving the situational awareness during a flooding event to support decision-making.  相似文献   

17.
The flood-affected areas in Siras district, Haryana, was mapped during 1993 using IRS-1A LISS-II data. Two categories of flood-affected areas viz. (i) standing water, and (ii) wet areas were identified. The flood water was standing in an area of 19676.25 ha, while wet areas covered 16773.75 ha., Silting of Ottu reservoir, mismanagement of river banks and bunds and lack of drainage system were identified, as major causes of floods. Three management practices including (i) desilting of Ottu reservoir, (ii) proper management of river banks and bands, and (iii) constructions of drains to flush out flood water have been suggested to contain the fury of floods. This study will be useful to the planners and administrators in the planning of flood-affected areas.  相似文献   

18.
In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better understand and communicate the complex spatial-temporal dynamics, return periods and potential/actual consequences to decision-makers and the local population.  相似文献   

19.
This paper assesses the feasibility of estimating water levels using digital photogrammetry. A common problem during an extreme flood event is that automated water level recorders do not record the highest water levels, as a result of instrument malfunctioning. This paper explores two possible solutions to this problem based upon data acquired using synoptic remote sensing methods. The first method requires: (a) high-resolution elevation data (for example, in the form of a digital elevation model for the floodplain); and (b) information on the planimetric position of the maximum flood extent, such as from debris lines (known as wrack lines) visible on aerial imagery flown after the event. The planimetric data can then be used to segment the topographic data in order to identify water level elevations. The second method uses a digitial photogrammetric approach and is suitable where no topographic data are available, but aerial imagery is available, flown after the event. Provided this imagery is of the right scale, digital photogrammetric analysis may be used to identify the elevations of wrack lines visible on the imagery. In this paper, the second of these options is compared with the first. The research shows that desktop photogrammetric methods, using 1:4500 scale imagery, can yield water level estimates that are precise to ±0·147 m, on the basis of check data obtained from lidar data. This is a worst possible estimate of the acquired precision given uncertainties in the lidar data. When compared with the first option, based upon segmenting lidar data using flood outlines, the photogrammetric approach was found to be preferable given both the quality of the lidar and uncertainties over how to segment it.  相似文献   

20.
首先通过分析三维激光扫描技术逐环获取的某越江盾构隧道汛期多期水平直径收敛变形与沉降数据,研究越江盾构隧道结构形变与水位相关性关系。然后讨论不同水位情况下盾构隧道收敛变形和道床沉降的趋势,通过汛期监测数据对比分析,得出水位升高状态下导致隧道水平直径收敛变形和沉降增大,水位下降后,水平直径收敛变形呈现回归趋势,并针对盾构隧道水平直径收敛与沉降提出加固措施。最后为预测隧道水平直径收敛变化情况,搜集往期隧道管片水平直径数据,通过Python 运行灰色算法程序预测未来隧道管片水平直径,实现了盾构隧道水平直径收敛精度为1 mm时的精准预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号