首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of the ocean circulation to changes in North Atlantic surface fluxes has become a major factor in explaining climate variability. The role of the Antarctic Bottom Water in modulating this variability has received much less attention, limiting the development of a complete understanding of decadal to millennial time-scale climate change. New analyses indicate that the southern deepwater source may change dramatically (e.g., experience a decrease of as much as two thirds during last 800 years). Such change can substantially alter the ocean circulation patterns of the last millennium. Additional analyses indicate that the Southern Hemisphere led the Northern Hemisphere changes in some of the glacial cycles of Pleistocene, implying a seesaw-type oscillation of the global ocean conveyor. The potential for melting of sea ice and ice sheets in the Antarctica associated with global warming can cause a further slowdown of the southern deepwater source. These results demand an assessment of the role of the Southern Ocean in driving changes of the global ocean circulation and climate. Systematic model simulation targeting the ocean circulation response to changes in surface salinity in the high latitudes of both Northern and Southern Hemispheres demonstrate that meltwater impacts in one hemisphere may lead to a strengthening of the thermohaline conveyor driven by the source in the opposite hemisphere. This, in turn, leads to significant changes in poleward heat transport. Further, meltwater events can lead to deep-sea warming and thermal expansion of abyssal water, that in turn cause a substantial sea-level change even without a major ice sheet melting.  相似文献   

2.
The Antarctic ice cap is the largest ice sheet of modern times. It is of considerable importance to predict the sea level variability due to the associated changes in ice volume. We present the results of a simple grounded ice sheet model, developed from Oerlemans [Oerlemans, J., 2002. Global dynamics of the Antarctic Ice Sheet, Climate Dynamics 19, 85–93.], in which the net oceanic evaporation influences the ice cap volume in two ways, through changes in: (i) the accumulation rate, and (ii) the mean sea level. The net evaporation changes are driven by the sea surface temperature (SST) anomaly time series of Howard [Howard, W.R., 1997. A warm future in the past, Nature, 388, 418–419.] for the subantarctic Southern Ocean over the period 220 kyr to the present. The effect of the waxing and waning of the northern hemisphere ice sheets is integrated into the model using an independent model, in which ice melting depends on the SST anomaly and ice calving depends on the sea level anomaly. A series of analytical expressions are derived for the related properties of the coupled ocean–ice system applicable over time scales of 100 kyr, which show, in particular, that the Antarctic ice cap volume changes are due mainly to the effects of the northern hemisphere ice sheets on sea level (which influences ice calving), rather than directly to changes in SST, and hence the ice cap volume is greatest during interglacial periods. This conclusion, which is independent of the specification of the ice melting regime for the northern hemisphere ice sheets, strongly suggests that the changes in accumulation flux estimated from the Vostok proxy temperature data and used in other studies of the Antarctic mass balance have been overestimated. A simple expression is also presented for the lag of ice cap volume to SST, and it is found that the predictions for the mean sea level variability are similar to observations for a melting flux of the northern hemisphere ice sheets about twice their accumulation flux due to the net oceanic evaporation, except during major deglaciations when these two fluxes appear to be of similar magnitude.  相似文献   

3.
Role of Arctic sea ice in global atmospheric circulation: A review   总被引:6,自引:0,他引:6  
Formed by the freezing of sea water, sea ice defines the character of the marine Arctic. The principal purpose of this review is to synthesize the published efforts that document the potential impact of Arctic sea ice on remote climates. The emphasis is on atmospheric processes and the resulting modifications in surface conditions such as air temperature, precipitation patterns, and storm track behavior at interannual timescales across the middle and low latitudes of the Northern hemisphere during cool months. Addressed also are the theoretical, methodological, and logistical challenges facing the current observational and modeling studies that aim to improve our awareness of the role that Arctic sea ice plays in the definition of global climate. Moving towards an improved understanding of the role that polar sea ice plays in shaping the global climate is a subject of timely importance as the Arctic environment is currently undergoing rapid change with little slowing down forecasted for the future.  相似文献   

4.
Previous studies have examined the effect of reduced Arctic sea ice cover on the circulation of climate models. Generally, the response is restricted to high northern latitudes. Here we examine a variant on those simulations, specifying both reduced Arctic sea ice cover and no Greenland ice sheet. The GENESIS general circulation model is used in these experiments. As in earlier studies, we find the effect limited primarily to the high latitudes of the northern hemisphere, being greater in winter than in summer. New results reported herein involve: (1) in winter reduced Arctic ice cover has a significantly greater effect than reduced Greenland ice cover; (2) reduced ice cover had little effect on location of the winter freezing line over North America and Eurasia; (3) removal of ice caused a 30–50% increase in precipitation in high northern latitudes; however there were no significant effects elsewhere. This result does not support the hypothesis that past changes in Arctic ice cover were responsible for significant changes in area of tropical rainforests; (4) there is a peculiar surface pressure anomaly that extends into the high latitudes of the southern hemisphere. This anomaly may be a spurious artifact of the effect of the removed Greenland ice sheet on the spherical harmonic expansion terms in the model. These sensitivity experiments should serve as a useful frame of reference for future Pliocene simulations with a more complete set of altered boundary conditions.  相似文献   

5.
Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based δ18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36.9±3.3 ka at 0.45 m below sea floor and correlate suspected glacial–interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The δ18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early–mid-Pleistocene (0.9–1.38 Ma). An increase in δ18O values after 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The δ18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial–interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16–21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic stratigraphy. Our results suggest the potential for the recovery of useful stable isotopic records in other TMFs.  相似文献   

6.
Land fraction and the solar energy at the top of the atmosphere (solar constant) may have been significantly lower early in Earth's history. It is likely that both of these factors played some important role in the climate of the early earth. The climate changes associated with a global ocean(i.e. no continents) and reduced solar constant are examined with a general circulation model and compared with the present-day climate simulation. The general circulation model used in the study is the NCAR CCM with a swamp ocean surface. First, all land points are removed in the model and then the solar constant is reduced by 10% for this global ocean case.Results indicate that a 4 K increase in air temperature occurs with global ocean simulation compared to the control. When solar constant is reduced by 10% under global ocean conditions a 23 K decrease in air temperature is noted. The global ocean warms much of the troposphere and stratosphere, while a reduction in the solar constant cools the troposphere and stratosphere. The largest cooling occurs near the surface with the lower solar constant.Global mean values of evaporation, water vapor amounts, absorbed solar radiation and the downward longwave radiation are increased under global ocean conditions, while all are reduced when the solar constant is lowered. The global ocean simulation produces sea ice only in the highest latitudes. A frozen planet does not occur when the solar constant is reduced—rather, the ice line settles near 30° of latitude. It is near this latitude that transient eddies transport large amounts of sensible heat across the ice line acting as a negative feedback under lower solar constant conditions keeping sea ice from migrating to even lower latitudes.Clouds, under lower solar forcing, also act as a negative feedback because they are reduced in higher latitudes with colder atmospheric temperatures allowing additional solar radiation to reach the surface. The overall effect of clouds in the global ocean is to act as a positive feedback because they are slightly reduced thereby allowing additional solar radiation to reach the surface and increase the warming caused by the removal of land. The relevance of the results to the “Faint-Young Sun Paradox” indicates that reduced land fraction and solar forcing affect dynamics, heat transport, and clouds. Therefore the associated feedbacks should be taken into account in order to understand their roles in resolving the “Faint-Young Sun Paradox”.  相似文献   

7.
We have used temperature data obtained from radiosondes and rocketsondes for the time interval 1965–1981 to estimate the interconnection of mean-annual temperature fluctuations at the various layers from the surface to the lower mesosphere of the Northern Hemisphere. Profiles of coefficients of correlation of the mean-annual temperature at each layer with mean-annual temperature at higher layers are shown for locations in the low, middle, and high latitudes. It is suggested that the mean-annual temperature variations at high latitudes of the troposphere are related with mean-annual temperature variations of the high latitudes of the lower stratosphere. Also, the mean-annual temperature variations at the high latitudes of the lower stratosphere are connected with mean-annual temperature variations at the high latitudes of the upper stratosphere. Furthermore, the mean-annual temperature variations of the upper stratosphere have an impressive correlation with mean-annual temperature variations of the lower mesosphere for whole northern hemisphere.  相似文献   

8.
Growth patterns of the last ice age coral terraces at Huon Peninsula   总被引:1,自引:0,他引:1  
At Huon Peninsula, Papua New Guinea, prolific coral growth during the last-glacial was episodic and in response to a series of sea-level rises. The resultant step-like coral terraces are currently situated from 20 m up to 140 m above sea-level due to continuous tectonic uplift of the Peninsula. The sea-level rises were in response to periodic partial disintegration of Northern Hemisphere ice sheets associated with severe climate swings and occurred within decadal timescales. The relatively rapid 15 m to 35 m rise in sea-levels exposed new head-room for corals to colonize. The resulting terrace structures contain individual corals that do not appear to have grown sequentially in time and with elevation. Additionally, following the peak, sea level fell relatively slowly over several thousand years and corals grew and filled in the flanks of the terrace such that younger corals now occupy lower elevations. We have labeled these structures “pack-up” reefs. This is in contrast to coral terraces formed during major sea-level rises from glacial to interglacial or glacial to interstadial transitions where the rate of sea level rise is commensurate with coral growth rates and corals can keep up with sea-level rise by growing on top of each other in a time orderly sequence. Deriving sea-level information from pack-up terraces is difficult and is likely to be ambiguous. The periodic fluctuations in climate were associated with atmospheric radiocarbon swings that seem to have varied smoothly with time. The same corals that show a scatter in stratigraphic temporal ordering appear regularly distributed in time and with radiocarbon content attesting to the veracity of the age measurements and at the same time confirm the disordered distribution of corals in “pack-up” type reefs.  相似文献   

9.
Teleconnections between Andean and New Zealand glaciers   总被引:1,自引:1,他引:0  
Retreat and advance of glaciers in the Southern Alps of New Zealand have occurred over two distinct 20-yr climate periods (1954–1974) and (1974–1994). Changes in tropical and southern Andean glaciers are compared over these same periods. Behaviour of glaciers in the tropical Andes are out of phase with the Southern Alps glaciers, but some glaciers in Patagonia appear to be in phase. Southern Hemisphere atmospheric circulation using 700 hPa geopotential height anomalies and sea surface temperature patterns are examined for these periods. Glacier response on inter-decadal timescales is linked with distinctive shifts in atmospheric circulation patterns around the Southern Hemisphere. Retreat (advance) of glaciers in the Southern Alps and southern Andean glacier and advance (retreat) of glaciers in the tropical Andes are all associated with weaker (stronger) westerlies, blocking events in the South-east Pacific, negative (positive) geopotential height anomalies over Southern Africa and higher latitudes of the Southern Hemisphere. These glacier changes are also linked with the negative (positive) phase of the Inter-decadal Pacific Oscillation, a higher frequency of La Niña (El Niño) events, and warm (cool) sea surface temperatures in the New Zealand region and cool (warm) sea surface temperatures in the equatorial eastern region of the Pacific Ocean off the coast of Peru.  相似文献   

10.
Tropical climatology through the last glacial cycle is believed to have ranged from colder, windier conditions at the Last Glacial Maximum (LGM) to relatively warm, stable conditions during the Holocene. Changes in strength of the South Asian monsoon have previously been determined from a variety of proxy data and have been attributed primarily to changes in radiative forcing, although tropical sea surface temperature (SST) is known to play a fundamental role in regulating monsoon strength and is also believed to have changed throughout the late Quaternary.In this study, the monsoons simulated in a coupled atmosphere–ocean general circulation model (GCM) configured for the mid-Holocene (6000 years B.P.) and for the LGM (21,000 years B.P.) are compared. The colder and windier conditions simulated for the LGM produced a summer monsoon whose westerly winds are stronger and whose precipitation and snowfall into the eastern Himalaya are increased, with drier conditions over the rest of the Indian subcontinent and over most of southwest Asia.The mid-Holocene monsoon circulation is stronger than today, and annual mean snow accumulation is increased over the northwestern Himalaya. These changes in precipitation and snow accumulation are analyzed in terms of the altered atmospheric circulations, which are in turn driven by changes in radiative forcing, sea surface temperatures, and sea surface height. All of these factors are therefore demonstrated to be important in governing the spatial distribution of snow and ice deposition in the Himalaya during the late Quaternary, and are likely to have contributed to the observed asynchroneity of Himalayan glaciation and Northern Hemisphere ice sheet volume.  相似文献   

11.
Studies of the mid-Norwegian margin reveal that the Fennoscandian continental uplift represents a flexural intraplate deformation event separated in time and space from the regional syn-rift uplift associated with crustal breakup at the Plaeocene-Eocene transition. In the area 64–68°N, the uplift occurred from late Oligocene through Pliocene. During Late Pliocene and Pleistocene times the tectonic uplift was amplified by isostatic rebound in response to the Northern Hemisphere glaciation. The tectonic uplift component reaches 1 km in the northern part of the study area decreasing to the south. The shelf stratigraphy and sediment composition record the combined effects of tectonic uplift, eustatic sea level changes and Neogene climatic deterioration. The coeval uplift and climatic change may suggest causal relations. The resulting depositional model has three stages: (1) late Miocene ( 10.5-5.5 m.y.) increased continental erosion and deposition of prograding wedges most of which were later removed; (2) early-middle Pliocene (5.5-2.6 m.y.) development of extensive local ice-sheets reaching the coastline and deposition of the prominent, oldest Pliocene wedges; (3) Northern Hemisphere glaciation (2.6-0.01 m.y.) resulting in the younger wedges farther west covered by Quaternary deposits. The model is consistent with the development of landforms on the adjacent mainland. Both the tectonic and isostatic components of the Fennoscandian uplift appear to vary in magnitude along the uplift axis, however separation of the syn-rift plate boundary related uplift and the intraplate event support the Neogene age of the main Fennoscandian uplift. We document a correspondence between structural and physiographic margin segmentation and uplift magnitude and suggest that the intraplate deformation has a thermal origin. A hot-cold asthenosphere boundary beneath the Caledonide-Baltic Shield transition combined with pre-Tertiary relief at the base of the lithosphere might induce small-scale convection and preferential volume expansion beneath the observed elongate uplift.  相似文献   

12.
Sedimentological, petrographic and geochronological (uranium series and amino acid racemization dating) study of middle Pleistocene deposits from the archipelagos of Bermuda and The Bahamas revealed the occurrence of marine terraces of possible stage 11 age at +2, +7 and over 20 m above mean sea level. Considering the tectonic stability of the investigated regions, these elevated deposits likely correspond to three discrete, higher than present sea levels during this time period, which is regarded by many as the warmest interglacial of the late Quaternary. It follows that warmer than present climatic conditions might profoundly modify water distribution between the cryosphere and the oceans. The punctuated nature of our stratigraphy further suggests that future deglaciation might not be a smooth process, but could be marked by rapid ice-sheet breakdown leading to abrupt, meter-scale sea-level rises. Given the long period of warm climate and stable sea level of the past few thousands of years and CO2 loading of the atmosphere, the probability of a rapid eustatic rise must be seriously considered.  相似文献   

13.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

14.
We present Globigerinoides ruber, G. sacculifer and Neogloboquadrina dutertrei oxygen isotope records from northwestern subtropical Atlantic Site 1058 spanning the mid Pleistocene ( 600 to 400 ka). The high temporal resolution of these records ( 800 yr) allows us to compare millennial-scale climate signals during one of the most extreme glacial periods of the Pleistocene (Marine Isotope Stage (MIS) 12) to an earlier, less extreme glacial (MIS 14), as well as to two full interglacial intervals (MIS 13 and MIS 15). We observe excellent agreement in the timing and amplitude of variations between the surface-most dwelling species G. ruber and Northern Hemisphere insolation during the two interglacial periods. There is some expression of Northern Hemisphere insolation during glacial MIS 14; however, during the more extreme glacial MIS 12 Northern Hemisphere insolation patterns are not apparent in any of the planktonic foraminiferal δ18O records. Insolation remains relatively high, but δ18O values increase toward the characteristic δ18O maximum of MIS 12 in all three of the records. On the millennial-scale, all three species display their highest amplitude δ18O variations (with a period between 4–6 kyr) during glacial MIS 12. Suborbital-scale variability is also statistically significant during glacial MIS 14, but the amplitude is smaller. These results support hypotheses linking millennial-scale climate fluctuations to the extent of continental glaciation. We propose that the relatively high degree of sea surface instability during one of the most extreme glacial periods of the Pleistocene arises from the competing effects of strong atmospheric winds related to the presence of a large ice sheet to the north and persistently high incident solar radiation during this interval of time.  相似文献   

15.
Our high latitude ionospheric model predicts the existence of a pronounced “dayside” trough in plasma concentration equatorward of the auroral oval in both the Northern and Southern Hemispheres for solar maximum, winter, and low geomagnetic activity conditions. The trough in the Southern Hemisphere is much deeper than that in the Northern Hemisphere, with the minimum trough density at 800 km being 2 × 103 cm−3 in the Southern Hemisphere and 104 cm−3 in the Northern Hemisphere. The dayside trough has a strong longitudinal (diurnal) dependence and appears between 11:00 and 19:00 U.T. in the Southern Hemisphere and between 02:00 and 08:00 U.T. in the Northern Hemisphere. This dayside trough is a result of the auroral oval moving to larger solar zenith angles at those universal times when the magnetic pole is on the antisunward side of the geographic pole. As the auroral ionization source moves to higher geographic latitudes, it leaves a region of declining photoionization on the dayside. For low convection speeds, the ionosphere decays and a dayside trough forms. The trough is deeper in the Southern Hemisphere than in the Northern Hemisphere because of the greater offset between the geomagnetic and geographic poles. Satellite data taken in both the Northern and Southern Hemispheres confirm the gross features of the dayside trough, including its strong longitudinal dependence, its depth, and the asymmetry between the Northern and Southern Hemisphere troughs.  相似文献   

16.
Most general circulation models (GCMs) project that climate will be warmer in the 21st century, especially in high latitudes. Climate warming will induce permafrost degradation, which would have great impacts on hydrology, ecosystems and soil biogeochemistry, and could destabilize the foundations of infrastructure. In this study, we simulated transient changes of permafrost distribution in Canada in the 21st century using a process-based permafrost model driven by six GCM-generated climate scenarios. The results show that the area underlain by permafrost in Canada would be reduced by 16.0–19.7% from the 1990s to the 2090s. This estimate was smaller than equilibrium projections because the ground thermal regime was in disequilibrium at the end of the 21st century and permafrost degradation would continue. The simulation shows significant permafrost thaw from the top: On average for the area where permafrost exists in all the years during 1990–2100, active-layer thickness increased by 0.3–0.7 m (or 41–104%), the depth to permafrost table increased by 1.9–5.0 m, and the area with taliks increased exponentially. Permafrost was also thawed from the bottom in southern regions.  相似文献   

17.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate.  相似文献   

18.
Evidence has accumulated that non-polar portions of Mars have undergone significant periods of glaciation during the Amazonian Period. This evidence includes tropical mountain glacial deposits, lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, and related landforms, some of which suggest that ice thicknesses exceeded a kilometer in many places. In some places, several lines of evidence suggest that ice is still preserved today in the form of relict debris-coved glaciers. The vast majority of deposit morphologies are analogous to those seen in cold-based glacial deposits on Earth, suggesting that little melting has taken place. Although these features have been broadly recognized, and their modes of ice accumulation and flow analyzed at several scales, they have not been analyzed and well-characterized globally despite their significance for understanding the evolution of the martian climate. A major outstanding question is the global extent of accumulation and flow of ice during periods of non-polar glaciation: As a mechanism to address this question, we outline two end-member scenarios to provide a framework for further discussion and analysis: (1) ice accumulation was mainly focused within individual craters and valleys and flow was largely local to regional in scale, and (2) ice accumulation was dominated by global latitudinal scale cold-based ice sheets, similar in scale to the Laurentide continental ice sheets on Earth. In order to assess these end members, we conducted a survey of ice-related features seen in Context Camera (CTX) images in each hemisphere and mapped evidence for flow directions within well-preserved craters in an effort to decipher orientation preferences that could help distinguish between these two hypotheses: regional/hemispheric glaciation or local accumulation and flow. These new crater data reveal a latitudinal-dependence on flow direction: at low latitudes in each hemisphere (<40–45°) cold, pole-facing slopes are strongly preferred sites for ice accumulation, while at higher latitudes (>40–45°), slopes of all orientations show signs of ice accumulation and ice-related flow. This latitudinal onset of concentric flow of ice within craters in each hemisphere correlates directly with the lowest latitudes at which typical pedestal craters have been mapped. Taken together, these observations demarcate an important latitudinal boundary that partitions each hemisphere into two zones: (1) poleward of ~45°, where net accumulation of ice is interpreted to have occurred on all surfaces, and (2) equatorward of ~45°, where net accumulation of ice occurred predominantly on pole-facing slopes. These results provide important constraints for deciphering the climatic conditions that characterized Mars during periods of extensive Amazonian non-polar glaciation.  相似文献   

19.
Ariel 4 satellite electron density data returned by the rf-capacitance probe on board are further investigated in order to seek any possible signature of the magnetic cusp in two different hemispheres during magnetically quiet periods at the 1972 vernal equinox. Ariel 4 electron density data covering the middle and high invariant magnetic latitudes at around 550 km altitude, for 91 days centered on the March 1972 equinox are employed. The data revealed a strong magnetic local time (MLT) dependence. The cusp signature was clearly in the Northern Hemisphere.  相似文献   

20.
Rocketsonde-derived temperature fluctuations within Northern Hemisphere are examined for the stratosphere and lower mesosphere in seasonal basis for the years 1969–78, inclusive. The rocketsonde records presentd here are homogeneous because of are mostly based on the Datasone system. It is suggested that Stratospheric-lower mesospheric temperature variations are about one order of magnitude larger than recorded in the literature before. The main feature in all seasons is that the cooling trend has maximum values at low latitudes in the lower Mesosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号