首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work we studied the performance of different numerical approaches to simulate the large amplifications of long period earthquake ground motion within the Gubbio plain, a closed-shape intra-mountain alluvial basin of extensional tectonic origin in Central Italy, observed during the Umbria-Marche 1997 seismic sequence. Particularly, referring to the Sep 26 1997 Mw6.0 mainshock, we considered the following numerical approximations: (a) 3D model, including a kinematic model of the extended seismic source, a layered crustal structure, and the basin itself with a simplified homogeneous velocity profile; (b) 2D model of a longitudinal and transversal cross-section of the basin, subject to vertical and oblique incidence of plane waves with time dependence at bedrock obtained by the 3D simulations; (c) 1D model. 3D and 2D numerical simulations were carried out using the spectral element code GeoELSE, exploiting in 3D its implementation in parallel computer architectures. 3D numerical simulations were successful to predict the observed large amplification of ground motion at periods beyond about 1 s, due to the prominent onset of surface waves originated at the southern edge of the basin and propagating northwards. More specifically, the difference of 3D vs 2D results is remarkable, since the latter ones fail to approach such large amplification levels, even when an oblique incidence of plane waves is considered.  相似文献   

2.
This study assesses the 3D amplification effects in shallow basins and quantifies the effects of site‐city interaction (SCI) on high‐rise buildings. A regional‐scale 3D spectral element simulation is conducted on the Tuen Mun‐Yuen Long basin, which contains multiple subbasins with heterogeneous and nonlinear soil profiles, while 3D city models with various building layouts are fully integrated into the basin model for our SCI study. We found a good correlation between spectral amplification factors and soil depths. Site response is significantly amplified at basin edges and centers due to surface waves generated at basin edges and the focusing effects stemming from 3D basin geometry. Transfer functions of 3D basins can be up to fourfold at fundamental frequencies as compared to 1D response, and further amplifications occur at high frequencies due to surface waves. In the SCI simulations, we observe wave trapping in the open space amid buildings resulting in energy concentration and up to twofold PGA amplifications. The wave trapping effect diminishes as the space between buildings increase beyond their range of influence (~100 m). The SCI analyses show that destructive kinetic energy in superstructures increases 28% in one horizontal direction but decreases 22% in the other. Our study concluded that, 1D site response analysis can significantly underestimate the seismic demand in shallow basins. Site‐city interaction of high‐rise buildings increases the short‐period spectra of ground motions, leading to an increase in their story accelerations by up to 50% and to a substantial decrease in the seismic safety of short structures in their vicinity.  相似文献   

3.
The main purpose of the paper is the analysis of seismic site effects in various alluvial basins. The analysis is performed considering a numerical approach (boundary element method). Two main cases are considered: a shallow deposit in the centre of Nice (France) [Soil Dyn. Earthquake Engng 19 (2000) 345] and a deep irregular basin in Caracas (Venezuela) [Comput. Geotech. 29 (2002) 573].

The amplification of seismic motion is analysed in terms of level, occuring frequency and location. For both sites, the amplification factor is found to reach maximum values of 20 (weak motion). Site effects nevertheless have very different features concerning the frequency dependence and the location of maximum amplification. For the shallow deposit in Nice, the amplification factor is very small for low frequencies and fastly increases above 1.0 Hz. The irregular Caracas basin gives a much different frequency dependence with many different peaks at various frequencies. The model for Caracas deep alluvial basin also includes a part of the local topography such as the nearest mountain. One can estimate seismic site effects due to both velocity contrast (between the basin and the bedrock) and local topography of the site.

Furthermore, the maximum amplification is located on the surface for Nice, whereas some strong amplification areas also appear inside the basin itself in the case of Caracas. One investigates the influence of this focusing effect on the motion versus depth dependence. This is of great interest for the analysis of seismic response of underground structures. The form and the depth of alluvial deposits are then found to have a great influence on the location of maximum amplification on the surface but also inside the deposit for deep irregular basins. It is essential for the analysis of the seismic response of both surface and underground structures.  相似文献   


4.
We study site effects using 520 weak motion earthquake records from a vertical array in Aegion, Greece. The array is inside a basin, has four stations in soil, and one in bedrock (178 m depth). The site is marked by high seismicity and complex surface geology. We first use the records to establish the downhole accelerometer orientations and their evolution with time. Then we estimate site effects using empirical spectral ratios with and without a reference site (standard and horizontal-to-vertical spectral ratio). We find significant site amplification which cannot be accounted for by 1D model predictions, along with a significant difference in the amplification level between the two horizontal components. These are indications of 2D effects, namely surface waves generated at the basin edge. The difference in amplification between the horizontal components is maximised when these are rotated with respect to the orientation of the basin edge. The strongest amplification takes place in the direction parallel to the basin edge (SH, or out-of-plane motion), and is up to 2 times higher than in the perpendicular direction (SV, or in-plane motion). This directional effect on the amplification is corroborated by numerical 2D modelling using incident SH and SV waves, with the former possibly generating strong Love waves. In the records, the directionality is clear for windows containing the largest amplitudes of the records (S waves and strong surface waves), while it tends to vanish for coda-wave windows. This directionality is also observed when using response spectral ratios rather than Fourier ratios. We compute soil-to-rock amplification factors for peak ground acceleration (PGA) and find it is significantly higher than what is predicted by current design codes. We attribute this difference to the basin edge amplification, linear soil behaviour, and to the inability of simple scalar values like PGA to describe complex amplification effects. Finally, we analyse the earthquake records at a surface station near the slope crest and do not observe significant topographic amplification.  相似文献   

5.
Alluvial valleys generate strong effects on earthquake ground motion (EGM). These effects are rarely accounted for even in site-specific studies because of (a) the cost of the required geophysical surveys to constrain the site model, (b) lack of data for empirical prediction, and (c) poor knowledge of the key controlling parameters. We performed 3D, 2D and 1D simulations for six typical sedimentary valleys of various width and depth, and for a variety of modifications of these 6 “nominal models” to investigate sensitivity of EGM characteristics to impedance contrast, attenuation, velocity gradient and geometry. We calculated amplification factors, and 2D/1D and 3D/2D aggravation factors for 10 EGM characteristics, using a representative set of recorded accelerograms to account for input motion variability. The largest values of the amplification and aggravation factors are found for the Arias intensity and cumulative absolute velocity, the lowest for the root-mean-square acceleration. The aggravation factors are largest for the vertical component. For each model, at least one EGM characteristic exhibits a significant 2D/1D aggravation factor, while all EGM characteristics exhibit significant 2D/1D aggravation factor on the vertical component. For all investigated sites, there is always an area in the valley for which 1D estimates are not sufficient. 2D estimates are insufficient at several sites. The key structural parameters are the shape ratio and overall geometry of the sediment-bedrock interface, impedance contrast at the sediment-bedrock interface, and attenuation in sediments. The amplification factors may largely exceed the values that are usually considered in GMPEs between soft soils and rock sites.  相似文献   

6.
建立包含震源、沉积盆地和表层低速沉积层的二维模型,采用交错网格有限差分/伪谱混合方法求解地震波传播,讨论沉积层厚度和速度对地震地面运动的作用。结果表明:沉积层内产生的地震波的多重反射以及转换会引起地面运动持续时间的延长,它们的相干叠加会造成地面运动峰值的放大;随着沉积层速度的增加,多重反射与转换波的能量减小,地面运动持续时间减小,但是不同速度或者不同厚度的低速层模型均显示出一致的地面运动峰值放大特征。结果说明,在包含震源、沉积盆地和沉积层的模型中,沉积层对地面运动的作用机理更复杂。在实际应用中有必要同时考虑这些因素的综合作用。  相似文献   

7.
Finite difference simulations of seismic wave propagation are performed in the Niigata area, Japan, for the 2007 Mw 6.6 Niigata-ken Chuetsu-Oki earthquake at low frequencies. We test three 3D structural models built independently in various studies. First aftershock simulations are carried out. The model based on 3D tomography yields correct body waves in the near field, but later phases are imperfectly reproduced due to the lack of shallow sediment layers; other models based on various 1D/2D profiles and geological interpretation provide good site responses but generate seismic phases that may be shifted from those actually observed. Next, for the mainshock simulations, we adopt two different finite source models that differ in the near-field ground motion, especially above the fault plane (but under the sea) and then along the coastline. Each model is found to be calibrated differently for the given stations. For engineering purposes, the variations observed in simulated ground motion are significant, but for seismological purposes, additional parameter calibrations would be possible for such a complex 3D case.  相似文献   

8.
The strong motion of a small long and narrow basin caused by a moderate scenario earthquake is simulated by using the spectral-element method and the parallel computing technique.A total of five different geometrical profiles within the basin are used to analyze the generation and propagation of surface waves and their relation to the basin structures in both the time and frequency domain.The amplification effects are analyzed by the distribution of peak ground velocity(PGV)and cumulative kinetic energy(Ek) in the basin.The results show that in the 3D basin,the excitation of the fundamental and higher surface wave modes are similar to that of the 2D model.Small bowls in the basin have great influence on the amplification and distribution of strong ground motion,due to their lateral resonances when the wavelengths of the lateral surface waves are comparable to the size of the bowls.Obvious basin edge effects can be seen at the basin edge closer to the source for constructive interference between direct body waves and the basin-induced surface waves.The Ek distribution maps show very large values in small bowls and some corners in the basin due to the interference of waves propagating in different directions.A high impedance contrast model can excite more surface wave modes,resulting in longer shaking durations as well as more complex seismograms and PGV and Ek distributions.  相似文献   

9.
柴达木盆地东部地震地面运动放大效应   总被引:1,自引:1,他引:0       下载免费PDF全文
柴达木盆地是青藏高原东北部大型断陷山间盆地,该地区的流动观测记录了2008年11月10日发生于大柴旦附近的M_W6.3地震。和附近的基岩上的记录相比,盆地内部的记录显示出非常显著的地面运动放大效应,表现为峰值速度的增大、持续时间的延长,其呈现出长持续时间的后续震相。傅里叶频谱分析表明盆地内部显著的后续震相的频率和直达波相比较低,地面质点运动轨迹图显示后续震相为面波运动特征。为了解释地面运动的差异,构建二维模型,通过交错网格高阶有限差分方法计算了地震波在盆地内部的传播过程,结果显示盆地内部低速层的存在造成直达波的放大以及多次反射与转换,盆地边缘结构造成的波的相干叠加产生了强烈的次生面波,其低频、大振幅、长持续时间的特征是盆地内部地面运动放大的主要原因。  相似文献   

10.
Strong ground motion observed at an instrumented hill site is first analysed through the standard (SSR) and the horizontal-to-vertical (HVSR) spectral ratio techniques. A reasonable agreement is found between these approaches. The observations are then compared with 3D numerical simulations, performed with a highly efficient numerical code based on a spectral method, that allowed for reasonable computer times also on a PC. The observed amplification is significantly higher than that computed with a 3D homogeneous model of the mountain, suggesting that local response is governed by large-scale and small-scale soil heterogeneities rather than by topographic site effects. The introduction of a local near-surface inclusion of nonhomogeneous soil material under one of the recording stations has not significantly improved the numerical results. The observed data are also compared with the results of simplified simulations, either using 2D homogeneous models or coupling the 3D response with a 1D local soil profile. The results of such simplified approaches are discussed and their usefulness is emphasised.  相似文献   

11.
A detailed 2D model has been constructed and validated for Euroseistest valley, in northern Greece. We take advantage of this model to investigate what parameters, in addition to surface soil conditions (obviously the most important parameter), can be used to correctly characterize site response in a 2D structure. Through a parametric analysis using 2D numerical simulations for SH waves, we explore the differences between the computed ground motion for different simplifications of the valley's structure. We consider variations in the velocity structure within the sediments, and variations of the shape between sediments and bedrock. We also compare the results from different 1D models reflecting current approaches to the determination of site response. Our results show clearly that, in the case of Euroseistest, site response owes fundamentally to its closed basin shape because it is largely controlled by locally generated surface waves. Thus, in terms of predicting site response, a rough idea of its shape ratio and of the average mechanical properties of the sediments are better than a very detailed 1D profile at the central site. Although the details of ground motion may vary significantly between the models, the relative amount of surface waves generated in the 2D models seems to be relatively constant. Moreover, if we quantify the additional amplification caused by the lateral heterogeneity in terms of the ‘aggravation factor’ introduced by Chávez-García & Faccioli [7], a roughly constant factor between 2 and 3 seems to appropriately take into account the effects of lateral heterogeneity. Of course, a correct estimate of the overall impedance contrast is necessary to correctly predict the maximum amplification, a caveat that also applies to 1D models. In this sense, Euroseistest rings an alarm bell. In this valley the more significant impedance contrast lies at about 200 m depth, and it is missed both by consideration of the average shear wave velocity of the first 30 m (the Vs30 criterion) or using the detailed velocity profile down to a depth where a shear wave velocity larger than 750 m/s is found. Our conclusions indicate that, in order to improve current schemes to take into account site effects in building codes, the more to be gained comes from consideration of lateral heterogeneity, at least in the case of shallow alluvial valleys, where locally generated surface waves are likely to be important.  相似文献   

12.
In this study data and results of a high-resolution experiment in Cephalonia (Greece) regarding empirical basin effects are presented. A total of 59 velocimeters and 17 accelerometers were deployed in the basin of Argostoli Cephalonia (Greece), for a period of 7 months (September 2011–April 2012). Due to high seismicity of the western Greece and surrounding area this array recorded thousands of local, regional and global events. Data used in this work come from a selection of 162 regional and local earthquakes, 3 km ≤ R ≤ 600 km, with magnitude range, 1.0 ≤ M ≤ 5.2. Based on high signal-to-noise ratio recordings and two selected reference stations, variation of several intensity measures (PGA, PGV, Arias Intensity, Cumulative Absolute Velocity), significant duration, HVSR and SSR of ground motion recordings on soil sites within the basin is carefully examined for a range of frequencies of engineering interest. Comparison of results with a detailed 2D geologic model shows a good consistency both in amplification and frequency domain. Influence of “reference” site on ground motion variation of soil sites is also discussed in light of our results. Finally, it is suggested that 2D or/and 3D theoretical modeling should be performed given the availability of geological and geophysical parameters to define a realistic model of the basin. Results of this study can undoubtedly serve in model validation and improvement of ground motion simulation tools.  相似文献   

13.
基于二维沉积盆地模型,采用D-P弹塑性模型模拟盆地的非线性特征。利用显式有限元与黏弹性边界结合的方法,通过改变盆地边缘倾角,在时域和频域内分析盆地地表的地震动响应,对比线性与非线性盆地地震反应的差异。结果表明:(1)土体非线性对整个盆地范围内地震动的影响都较显著。考虑非线性时地震动放大系数明显降低,降低幅度在30%~50%。同时,考虑非线性和倾角影响时最强烈放大区域的范围和位置变化,且很小倾角下的分布特征显著不同。(2)两分量的放大系数都有随边缘倾角的增大而增强的趋势,但均是盆地边缘区域受非线性的影响最为显著。此外,真实地震波输入下显著放大区域的范围及线性与非线性结果的差异程度相对更大。(3)考虑非线性时,对于不同频率地震波的放大系数差别明显,但都表现出从低频到高频谱比分布越来越复杂的现象,同时盆地倾角的影响程度随频率的增大更加明显。(4)考虑土体非线性并未改变地震波传播的总体特征,但各震相强度相对降低。  相似文献   

14.
我国地震动预测及地震危险性分析通常仅考虑局部场地浅层岩土层对地震动的放大效应,不能考虑较大范围的地质条件影响,如沉积盆地厚沉积层对地震动的附加放大效应通常被忽略,造成盆地内地震动及地震危险性预测结果普遍被低估。本文以地震动观测记录数据充足的日本关东盆地为例,采用地震动残差分析方法评估盆地附加放大效应,分析覆盖层厚度、盆地内空间位置、震级、震源距对地震动放大效应的影响,建立关东盆地附加放大效应经验评估模型。分析表明:关东盆地附加放大效应与反应谱周期相关,整体上从短周期的1.0逐渐增大至周期为5s时的1.5,附加放大效应与覆盖层厚度相关性较小,主要受盆地空间位置和震源距的影响;盆地北部边缘及西北部地区附加放大效应更强烈,盆地南部附加放大效应较小,这可能与盆地边缘效应密切相关。本文建立的关东盆地附加放大效应经验模型略高于BSSA14和ASK14模型的放大效应预测。相关研究结果可用于我国地震动预测、下一代地震动区划图修订等。  相似文献   

15.
Site response in Japan is characterized using thousands of surface and borehole recordings from events of moment magnitude $(\mathbf{M}) > 5.5$ collected by the KiK-net network, including the 2011 M9.0 Tohoku earthquake. Site amplification is defined by the ratio of motions at the surface to those at depth (within the borehole), corrected for the depth effect due to destructive interference using a technique based on cross-spectral ratios between surface and down-hole motions. Site effects were particularly strong at high frequencies, despite the expectation that high-frequency response may be damped by nonlinear effects. In part, the large amplitudes at high frequencies are due to the prevalence of shallow soil conditions in Japan. We searched for typical symptoms for soil nonlinearity, such as a decrease in the predominant frequency and/or amplification, using spectral ratios of weak to strong ground motions. Localized nonlinearity occurred at some recording sites, but was not pervasive. We developed a general empirical model to express site amplification for the KiK-net sites as a function of common site variables, such as the average shear-wave velocity in the uppermost 30 m ( $\text{ V}_\mathrm{S30})$ and the horizontal-to-vertical (H/V) spectral ratio. We use the model to estimate site-corrected ground-motions for the Tohoku mainshock for a reference site condition; these motions are in reasonable agreement with the predictions of some of the published ground motion prediction equations for subduction zones.  相似文献   

16.
Southwest British Columbia has the potential to experience large‐magnitude earthquakes generated by the Cascadia Subduction Zone (CSZ). Buildings in Metro Vancouver are particularly vulnerable to these earthquakes because the region lies above the Georgia sedimentary basin, which can amplify the intensity of ground motions, particularly at medium‐to‐long periods. Earthquake design provisions in Canada neglect basin amplification and the consequences of accounting for these effects are uncertain. By leveraging a suite of physics‐based simulations of M9 CSZ earthquakes, we develop site‐specific and period‐dependent spectral acceleration basin amplification factors throughout Metro Vancouver. The M9 simulations, which explicitly account for basin amplification for periods greater than 1s, are benchmarked against the 2016 BC Hydro ground motion model (GMM), which neglects such effects. Outside the basin, empirical and simulated seismic hazard estimates are consistent. However, for sites within the basin and periods in the 1‐5 s range, GMMs significantly underestimate the hazard. The proposed basin amplification factors vary as a function of basin depth, reaching a geometric mean value as high as 4.5 at a 2‐s period, with respect to a reference site located just outside the basin. We evaluate the impact of the M9 simulations on tall reinforced concrete shear wall buildings, which are predominant in the region, by developing a suite of idealized structural systems that capture the strength and ductility intended by historical seismic design provisions in Canada. Ductility demands and collapse risk conditioned on the occurrence of the M9 simulations were found to exceed those associated with ground motion shaking intensities corresponding to the 975 and 2475‐year return periods, far exceeding the ~500‐year return period of M9 CSZ earthquakes.  相似文献   

17.
Seismic characterization and monitoring of Fucino Basin (Central Italy)   总被引:1,自引:1,他引:0  
The Fucino basin (Central Italy) is one of the largest intramountain alluvial plain in the Apennines range. It has a tectonic origin related to the presence of important systems of faults located in its northern and eastern edges. Some of these faults are still active and capable of generating strong seismic events. Site effects related to the soft soils filling the basin can be very important. In this paper we show the preliminary results of a seismic network installed in the Fucino area in order to collect information about site amplification effects and geometry of the basin. We analyze ambient seismic vibrations and recordings of about 150 local earthquakes mainly related to the seismic sequence of the April 6th 2009 Mw 6.3 L’Aquila event. Moreover the strongest events of L’Aquila sequence were analyzed at the three permanent strong-motion stations operating in the area. Using standard spectral techniques we investigate the variation of resonance frequencies within the basin. The ground motion recorded in the Fucino plain is mainly characterized by strong energy at low-frequencies (f < 1 Hz) affecting both horizontal and vertical components. This is particularly evident for stations deployed in correspondence of very thick deposits of sedimentary filling, where a significant increase of ground-motion amplitude and duration is likely caused by locally generated surface waves. The amplification at low-frequencies (<1 Hz) on the horizontal components can reach up a factor of 10 in comparison to nearby stiff sites. However, we found evidences of seismic amplification phenomena also for stiff sites surrounding the basin, including stations of the Italian strong motion network. The independent geological information and the shallow shear-velocity profiles available for the basin can be combined with resonance frequencies for deriving representative geological sections to be used as base for future numerical 2D–3D modeling of the basin.  相似文献   

18.
直下型断层的破裂速度对盆地地震效应的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
首先基于有限断层破裂下的运动学震源模型,对比验证了三维谱元法对于近场地震动的模拟精度。 进而通过含盆地模型与不含盆地的一维水平成层模型的地震动强度之间和放大系数分布特征之间的对比,详细研究了直下型断层的破裂速度对盆地地震效应的影响。结果表明,盆地的存在会显著改变近断层地震动的分布特征,同时盆地内不同分量强地震动的分布特征变化较大。断层破裂速度对盆地地震效应影响显著,随破裂速度的增大盆地地震动强度逐渐增加,但不同分量上地震动强度的增加速率显著不同,受盆地效应的影响,放大系数表现出与强地震动不同的分布特征。盆地放大系数整体表现出随破裂速度的增加而减小的趋势,但不同分量放大系数所受影响程度差异明显。同时,盆地内地震动强烈放大区域的位置也受破裂速度的显著影响,但其总体上集中在断层两侧区域及垂直于破裂方向的盆地边缘附近。   相似文献   

19.
Although it has been increasingly acknowledged that groundwater flow pattern is complicated in the three‐dimensional (3‐D) domain, two‐dimensional (2‐D) water table‐induced flow models are still widely used to delineate basin‐scale groundwater circulation. However, the validity of 2‐D cross‐sectional flow field induced by water table has been seldom examined. Here, we derive the analytical solution of 3‐D water table‐induced hydraulic head in a Tóthian basin and then examine the validity of 2‐D cross‐sectional models by comparing the flow fields of selected cross sections calculated by the 2‐D cross‐sectional model with those by the 3‐D model, which represents the “true” cases. For cross sections in the recharge or discharge area of the 3‐D basin, even if head difference is not significant, the 2‐D cross‐sectional models result in flow patterns absolutely different from the true ones. For the cross section following the principal direction of groundwater flow, although 2‐D cross‐sectional models would overestimate the penetrating depth of local flow systems and underestimate the recharge/discharge flux, the flow pattern from the cross‐sectional model is similar to the true one and could be close enough to the true one by adjusting the decay exponent and anisotropy ratio of permeability. Consequently, to determine whether a 2‐D cross‐sectional model is applicable, a comparison of hydraulic head difference between 2‐D and 3‐D solutions is not enough. Instead, the similarity of flow pattern should be considered to determine whether a cross‐sectional model is applicable. This study improves understanding of groundwater flow induced by more natural water table undulations in the 3‐D domain and the limitations of 2‐D models accounting for cross‐sectional water table undulation only.  相似文献   

20.
Scattering of elastic waves by an orthotropic sedimentary basin is investigated for antiplane strain model using an indirect boundary integral equation approach. Both steady state and transient response were obtained for semicircular and semielliptical basins with different material properties. The results indicate that the basin geometry and the impedance contrast between the half-space and the basin have similar effects on the surface ground motion amplification as for the isotropic case. However, the material anisotropy may change significantly the fundamental resonant frequencies of the basin, resulting in different surface displacement amplification patterns. In addition, it was observed that the arrival time of the main disturbance on the surface strongly depends on material anisotropy for different angles of incidence. The results demonstrate that material anisotropy may be very important in explaining surface ground motion amplification for sedimentary basins. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号