首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

2.
The catalogue of protoplanetary nebulae by Vickers et al. has been supplemented with the line-of-sight velocities and proper motions of their central stars from the literature. Based on an exponential density distribution, we have estimated the vertical scale height from objects with an age less than 3 Gyr belonging to the Galactic thin disk (luminosities higher than 5000 L ) to be h = 146 ± 15 pc, while from a sample of older objects (luminosities lower than 5000 L ) it is h = 568 ± 42 pc. We have produced a list of 147 nebulae in which there are only the line-of-sight velocities for 55 nebulae, only the proper motions for 25 nebulae, and both line-of-sight velocities and proper motions for 67 nebulae. Based on this kinematic sample, we have estimated the Galactic rotation parameters and the residual velocity dispersions of protoplanetary nebulae as a function of their age. We have established that there is a good correlation between the kinematic properties of nebulae and their separation in luminosity proposed by Vickers. Most of the nebulae are shown to be involved in the Galactic rotation, with the circular rotation velocity at the solar distance being V 0 = 227 ± 23 km s?1. The following principal semiaxes of the residual velocity dispersion ellipsoid have been found: (σ1, σ2, σ3) = (47, 41, 29) km s?1 from a sample of young protoplanetary nebulae (with luminosities higher than 5000 L ), (σ1, σ2, σ3) = (50, 38, 28) km s?1 from a sample of older protoplanetary nebulae (with luminosities of 4000 L or 3500 L ), and (σ1, σ2, σ3) = (91, 49, 36) km s?1 from a sample of halo nebulae (with luminosities of 1700 L ).  相似文献   

3.
4.
Two quasars SDSS J010013.02+280225.8 and J030642.51+185315.8 with redshifts z = 6.30 and z = 5.363 were recently discovered. Their apparent magnitudes in the standard cosmological model give the luminosities of Lbol ~ 4.3 × 1014L and Lbol ~ 3.4 × 1014L. In the framework of modern concepts it is accepted that the energy release of quasars is provided by the accretion onto black holes with masses of 1.24 ± 0.19 × 1010M and 1.07 ± 0.27 × 1010M. As within the standard cosmological model the ages of these objects are about one billion years, this creates serious difficulties for the scenario of formation of such objects. Here we interpret the ultra-high luminosities of quasars as the effect of lensing of their radiation by the foreground globular clusters or dwarf galaxies.  相似文献   

5.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

6.
We present the results of spectroscopic and photometric studies of a new polar CRTS CSS130604 J 215427+155714, conducted at the telescopes of the SAO RAS. Analysis of the photometric series of observations allowed to clarify the orbital period of the system, P o = 0. d 0672879 (±0.0000003). We build radial velocity curves and trace the intensity variations in the Hβ and Hγ hydrogen lines and He II λ 4686 ?A ionized heliumline. Based on the Hβ and He II lines we build Doppler maps. It is shown that the line formation region is localized near the Lagrange point. The following parameter estimates of the system are obtained:M 1 = 0.83 ± 0.10M , M 2 = 0.15 ± 0.01M , q = M 2/M 1 = 0.18 ± 0.03, i = 53? ± 5?. Based on the results of spectral, photometric and previously published polarimetric observations the possible geometric model of the system is discussed.  相似文献   

7.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

8.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

9.
The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = ?0.20 ± 0.04, M Y = ?0.470 ± 0.045, M[3.6] = ?1.70 ± 0.03, M[4.5] = ?1.60 ± 0.03, M[5.8] = ?1.67 ± 0.03, and M[8.0] = ?1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [M/H] ? 0.40 (Z ? 0.038) with an error of [M/H] ? 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9–10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of ~8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200–8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.  相似文献   

10.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

11.
Based on data from the Two-Micrometer All-Sky Survey (2MASS), we analyzed the infrared properties of 451 Local-Volume galaxies at distances D ≤ 10 Mpc. We determined the K-band luminosity function of the galaxies in the range of absolute magnitudes from ?25m to ?11m. The local luminosity density within 8 Mpc is 6.8 × 108L Mpc?3, a factor of 1.5 ± 0.1 higher than the global mean K-band luminosity density. We determined the ratios of the virial mass to the K-band luminosity for nearby groups and clusters of galaxies. In the luminosity range from 5 × 1010 to 2 × 1013L, the dependence log(M/LK) ∝ (0.27 ± 0.03) log LK with a dispersion of ~0.1 comparable to the measurement errors of the masses and luminosities of the systems of galaxies holds for the groups and clusters of galaxies. The ensemble-averaged ratio, 〈M/LK〉 ? (20–25) M/L, was found to be much smaller than the expected global ratio, (80–90)M/L, in the standard model with Ωm = 0.27. This discrepancy can be eliminated if the bulk of the dark matter in the Universe is not associated with galaxies and their systems.  相似文献   

12.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

13.
We investigate the variation of the fraction of galaxies with suppressed star formation (MK < ?21 . m 5) and early-type galaxies (fracE) of the “red sequence” along the projected radius in six galaxy clusters:Coma (A1656), A1139, and A1314 in the Leo supercluster region (z ≈ 0.037) and A2040, A2052, A2107 in the Hercules supercluster region (z ≈ 0.036). According to SDSS (DR10) data, fracE is the highest in the central regions of galaxy clusters and it is, on the average, equal to 0.62 ± 0.03, whereas in the 2–3R/R200c interval and beyond the Rsp ≈ 0.95 ± 0.04 R200m radius that we inferred from the observed profile fracE is minimal and equal to 0.25 ± 0.02. This value coincides with the estimate fracE = 0.24 ± 0.01 that we inferred for field galaxies located between the Hercules and Leo superclusters at the same redshifts. We show that the fraction of galaxies with suppressed star formation decreases continuously with cluster radius from 0.87 ± 0.02 in central regions down to 0.43 ± 0.03 in the 2–3 R/R200c interval and beyond Rsp, but remains, on the average, higher than 26% than the corresponding fraction for field objects. This decrease is especially conspicuous in the galaxy mass interval log M* [M] = 9.5–10. We found that galaxies with ongoing star formation have average clustercentric distances 1.5–2.5 R/R200c and that their radial-velocity dispersions are higher than those of galaxies with suppressed star formation.  相似文献   

14.
The system of subdwarfs G89-14 is one of the most metal-poor multiple stars with an atmospheric metal abundance [m/H] = ?1.9. Speckle interferometry at the 6-m BTA telescope has revealed that G89-14 consists of four components. Measurements of the magnitude difference between the components and published data have allowed their masses to be estimated: M A ≈ 0.67 M , M B ≈ 0.24M ,M C ≈ 0.33M , andM D ≈ 0.22M . The ratio of the orbital periods of the subsystems has been obtained, 0.52 yr: 3000 yr: 650 000 yr (1: 5769: 1 250 000), indicative of a high degree of hierarchy o fG89-14 and its internal dynamical stability. The calculated Galactic orbital elements and the low metallicity of the quadruple system suggest that it belongs to the Galactic halo.  相似文献   

15.
We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E (B ? V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s?1 and 9 × 1030 erg s?1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s?1 (4.76 × 10?11M yr?1) and 5 × 1013 erg s?1 (7.93 × 10?13M yr?1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.  相似文献   

16.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

17.
We consider a sample of 412 galaxies with radial velocities V LG < 2500 kms?1 situated in the sky region of RA = 13. m 0–19. m 0, Dec = +10?...+40? between the Local Void and the Supergalactic plane. One hundred and eighty-one of them have individual distance estimates. Peculiar velocities of the galaxies as a function of Supergalactic latitude SGB show signs of Virgocentric infall at SGB < 10? and motion from the Local Void at SGB > 60?. A half of the Hercules–Bootes galaxies belong to 17 groups and 29 pairs, with the richest group around NGC5353. A typical group is characterized by the velocity dispersion of 67 km s?1, the harmonic radius of 182 kpc, the stellar mass of 4.3 × 1010 M and the virialto- stellar mass ratio of 32. The binary galaxies have the mean radial velocity difference of 37 kms?1, the projected separation of 96 kpc, the mean integral stellar mass of 2.6×109M and the mean virial-to-stellar mass ratio of about 8. The total dark-matter-to-stellar mass ratio in the considered sky region amounts to 37 being almost the same as that in the Local Volume.  相似文献   

18.
Based on observations of SN 1999em, we determined the physical parameters of this supernova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found the parameters of the presupernova: radius R = 450R, mass M = 15M, and explosion energy E = 7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M, and E must be increased to the following values: R = 1000R, M = 18M, and E = 1051 erg. We show that one cannot restrict oneself to using the simple analytical formulas relating the supernova and presupernova parameters to obtain reliable parameters for type-IIP presupernovae.  相似文献   

19.
We present the results of the study of the eclipsing polar CRTS CSS081231 J071126+440405. Photometric observations allowed us to refine the orbital period of the system \(P_ \circ = 0_ \cdot ^d 0.08137673\). Considerable changes in the appearance of the object’s spectra have occurred over the period of September 20–21, 2001: the slope of the continuum changed from “red” to “blue”, and the variability of the line profiles over the duration of the orbital period has also changed. Doppler maps have shown a shift of the emission line-forming region along the accretion stream closer to the white dwarf. We measured the duration of the eclipse of the system and imposed constraints on the inclination angle \(78_ \cdot ^ \circ 7 < i < 79_ \cdot ^ \circ 3\). The derived radial velocity amplitude was used to obtain the basic parameters of the system: M1 = 0.86 ± 0.08M, M2 = 0.18 ± 0.02 M, q = 0.21 ± 0.01, RL2 = 0.20 ± 0.03 R, A = 0.80 ± 0.03 R. The spectra of the object exhibit cyclotron harmonics. Their comparison with model spectra allowed us to determine the parameters of the accretion column: B = 31–34 MG, Te = 10–12 keV, θ = 80–90°, and Λ = 105.  相似文献   

20.
A series of highly accurate photoelectric observations of the eclipsing binary MZ Lac was obtained with a 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Station of the Sternberg Astronomical Institute from 1985 to 2004 to study its apsidal motion. We constructed a consistent system of physical and geometrical parameters of the components and the binary’s orbit: we determined their masses (M1 = 1.50M, M2 = 1.29M), radii (R1 = 1.86R, R2 = 1.35R), luminosities (L1 = 0.79L, L2 = 0.45L), surface gravities (logg1 = 4.06, logg2 = 4.27), age (t = 1.9 × 109 yr), and the distance to the binary (d = 510 pc). The binary exhibits apsidal motion with the period Uobs = 480 ± 40 yr, while its theoretically expected value is Uth = 450 ± 40 yr. Spectroscopic studies of MZ Lac and calculations of the absolute parameters of the components are required to test our conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号