首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of possible mechanisms of 137Cs concentration changes in surface waters was performed in the process of preparation of reliable long-range forecasts of radioactive river contamination after the Chernobyl accident. The following mechanisms were considered: (1) radioactive decay; (2) advective transport with river waters; (3) irreversible sorption; (4) vertical migration deep into bottom sediments due to diffusion; (5) burial in clean bottom sediments. The data published on 137Cs monitoring at Dobrush, on the Iput’ River in Belarus were used in the analysis. It is shown that the best agreement with the experimental results is achieved when the second, third, and fifth mechanisms are used in calculations. However, a dominating mechanism still cannot be chosen at the present stage of our study. Most probably, all of these mechanisms act simultaneously.  相似文献   

2.
The issues of assessing variability of 137Cs fallout of global and Chernobyl origin at reference sites are discussed with a purpose to use this isotope as a tracer for estimating the rates of erosion-accumulative processes. It is shown that local variability of soil contamination by 137Cs at reference sites is within 7–20%, which makes it possible to use the isotope as a tracer. When studies are conducted within drainage basins, the available trend of the atmospheric 137Cs fallout should be taken into account in assessing the soil and sedimentation redistribution.  相似文献   

3.
Experimental field and laboratory studies on washout of radionuclides from the snow cover during snow melting were carried out in the winter of 2005/06. In the field studies, a specially equipped runoff site was used. In the laboratory conditions, the experiments were conducted using prepared soil monoliths. In the winter of 2006, 25 g/m2 of water-free cesium chloride (CsCl) and 25 g/m3 of strontium chloride (SrCl2) were put onto the snow cover surface of the runoff site. The snow surface of the soil monolith was coated with a 137Cs-bearing solution, then with SrCl2. Under experimental conditions, practically no surface runoff from the runoff site was recorded. The experiments with the soil monoliths demonstrated that the coefficient of the liquid washout of 137Cs normalized to the runoff layer was within 0.9 × 10?6–1.2 × 10?4 mm?1, and that of 90Sr normalized to the runoff layer was within 2 × 10?–1.6 × 10?4 mm?1.  相似文献   

4.
Experimental investigations under field and laboratory conditions of 137Cs washout from the periodically frozen and thawed soils were carried out. The experiments demonstrated that the amount of cesium washed out from the soil after freezing was much larger than from the non-frozen soils and by its intensity it corresponds to the washout under the influence of intensifiers. This fact allows recommending cheap and technologically simple measures for the in-snow runoff control to rehabilitate the contaminated lands.  相似文献   

5.
The estimates of 137Cs emissions from the accident happened in Elektrostal at the beginning of April 12, 2013 are presented. The transport of radionuclides and their dry and wet deposition on the surface are computed using the Lagrangian stochastic model of the NOSTRADAMUS software package worked out by Nuclear Safety Institute of Russian Academy of Sciences. Prognostic fields of wind (horizontal and vertical components) in the lower troposphere, precipitation, and vertical and horizontal turbulence diffusivity coefficients in the lower atmosphere (up to 4 km) were used as input data. Prognostic fields were obtained using the WRF-ARW numerical mesoscale model.  相似文献   

6.
7.
A method for identifying past radiation events from dated layers of bottom sediments in stagnant water bodies is described. Results of an experimental study (2005–2006) of the samples of bottom sediments in the pond of the Timiryazev dendropark in Moscow are considered. The sediment layers are dated with 210Pb. The same radionuclide is used as a tracer for calculating the rate of sedimentation in the pond, which is estimated at 0.3–0.4 cm/year. The maximum 137Cs values are detected in the 0–24 cm column at depths of 7 and 13 cm. The 137Cs peak at a depth of 13 cm is dated as 1963, which reflects the maximum global fallout from the atmospheric nuclear weapon tests. A small peak of this radionuclide at 7 cm is dated as 1986. It appears to be attributed to the long-range fallout after the Chernobyl NPP accident. The origin of the 137Cs maximum at a depth of 13–14 cm is confirmed by characteristic ratios of radionuclide pairs available in the global fallout in the Moscow region. The ratios of 90Sr/137Cs = 0.6 and 239,240Pu/137Cs = 0.03 in the 13–14 cm layer are characteristic of the global radioactive fallout from nuclear explosions. In the layers above this maximum, such ratios vary sharply toward the enhanced 137Cs content in the fallout.  相似文献   

8.
The results of modeling of 89, 90Sr, 137Cs, and 239, 240Pu migration in the Techa River are compared with observed data. It is shown that taking into account of the process of mass exchange between the main stream of a river and underflow is important for adequate modeling of migration and accumulation of radiative substances in a river. It is difficult to obtain results of modeling corresponding to the observed data if the process is neglected. Taking into account the mass exchange is especially important in developing models for long enough rivers that were polluted by radionuclides during long time. Authors believe that, in future, the considered aspects of modeling radioactive substances in rivers can be generalized on chemical polluting substances with similar physical and chemical properties, for example, heavy metals, phenols, etc.  相似文献   

9.
A multi-chamber model of radioactivity migration in reservoirs was developed. It describes transport of radioactive substances in water and in bed sediments taking into account sorbtion of radionuclides on suspended particles. The model provides higher resolution than simplified chamber models do. At the same time, unlike complex two- or three-dimensional dynamic models, it does not require hard-to-obtain data such as detailed data on bathymetry, currents and winds. The model was included into the Sybilla program code that was developed in the framework of the Rosatom project called PRORYV. The model was verified against the observed data on the contamination of the Kiev Reservoir with 137Cs in 1986.  相似文献   

10.
The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.  相似文献   

11.
The series of δ18O values is presented for all precipitation events in Moscow in 2014. Precipitation samples were taken at the observation site of the Meteorological Observatory of Lomonosov Moscow State University (MSU MO), and the isotopic analysis was carried out in the isotopic laboratory of the Department of Geography of MSU. The concentration of stable 18O in precipitation over Moscow in 2014 varied from -0.09 to -26.29‰. The maximum amplitudes of δ18O were registered in March-April and October. The pronounced interrelation was revealed between the oxygen isotopic composition of precipitation and surface air temperature (the correlation coefficient is 0.85). The computation of back trajectories of air masses and the analysis of weather charts demonstrated that the most isotopically light precipitation is typical of relatively cold air masses slowly moving over the continent during the last five days before precipitation. In this case, the ongoing condensation leads to the progressive isotopic depletion of precipitation (more and more isotope-depleted precipitation is registered). On the contrary, fast air transport from the middle and even from high latitudes of the Atlantic Ocean leads to the relatively constant of δ18O values of precipitation.  相似文献   

12.
90Sr runoff amounted to 0.22–0.67% of its budget in the catchment; the value is lower for high-latitude rivers running in the zone of frozen and seasonally frozen grounds. The ecological half-period of a decrease in the 90Sr concentration in the river water of Eastern Fennoscandia amounted to 5.9–11.5 years in 1979–1985. The lake waters (Lake Ladoga and Lake Päijänne) were renewed approximately 4–5 times faster than the 90Sr content decreased in these lakes.  相似文献   

13.
The aerosol deposition rate is computed for some chemical elements from the resuits of studies on the elemental composition of atmospheric aerosol and snow cover in the background and anthropogenic areas in the Primorskii krai as well as for the radionuclide 137Cs and suspended matter from the data of atmospheric radioactive pollution monitoring. Taking into account the differences in sampling methods, the rather close values of deposition rate were obtained for chemical elements and radionuclide.  相似文献   

14.
Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10?13 cm3 molecule?1 s?1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10?13 cm3 molecule?1 s?1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/? 0.8 nmol m?2 d?1 for CH2I2 and 3.7 +/? 0.8 nmol m?2 d?1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2–4 × 10?13 cm3 molecule?1 s?1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.  相似文献   

15.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Hydrofluorocarbons(HFCs) have been widely used in China as substitutes for ozone-depleting substances,the production and use of which are being phased out under the Montreal Protocol.China is a major consumer of HFCs around the world,with its HFC emissions in CO_2-equivalent contributing to about 18% of the global emissions for the period2012-16.Three methods are widely used to estimate the emissions of HFCs-namely,the bottom-up method,top-down method and tracer ratio method.In this study,the tracer ratio method was adopted to estimate HFC emissions in the Yangtze River Delta(YRD),using CO as a tracer.The YRD region might make a significant contribution to Chinese totals owing to its rapid economic growth.Weekly flask measurements for ten HFCs(HFC-23,HFC-32,HFC-125,HFC-134 a,HFC-143 a,HFC-152 a,HFC-227 ea,HFC-236 fa,HFC-245 fa and HFC-365 mfc) were conducted at Lin'an Regional Background Station in the YRD over the period 2012-16,and the HFC emissions were 2.4±1.4 Gg yr~(-1) for HFC-23,2.8±1.2 Gg yr~(-1) for HFC-32,2.2±1.2 Gg yr~(-1) for HFC-125,4.8±4.8 Gg yr~(-1) for HFC-134 a,0.9±0.6 Gg yr~(-1) for HFC-152 a,0.3±0.3 Gg yr~(-1) for HFC-227 ea and 0.3±0.2 Gg yr~(-1) for HFC-245 fa.The YRD total HFC emissions reached 53 Gg CO_2-e yr~(-1),contributing 34% of the national total.The per capita HFC CO_2-equivalent emissions rate was 240 kg yr-1,while the values of per unit area emissions and per million GDP emissions reached 150 Mg km~(-2)yr~(-1) and 3500 kg yr~(-1)(million CNY GDP)-1,which were much higher than national or global levels.  相似文献   

17.
To characterize atmospheric particulate matter equal or less than 2.5 μm in diameter (PM2.5) over the Tropical Atlantic Ocean, aerosol sampling was carried out in Puerto Rico during August and September, 2006. Aerosols were analyzed by ion chromatography for water-soluble inorganic and organic ions (including Na+, NH4 +, Mg2+, Ca2+, K+, Cl?, SO4 2?, NH4 +, F?, methanesulfonate (MSA), and oxalate), by inductive coupled plasma mass spectrometry (ICPMS) for trace elements (Al, Fe, Zn, Mn, Cu, Ni, V, Pb, Cr, Sb, Co, Sc, Cd), and by scanning electron microscopy for individual aerosol particle composition and morphology. The results show that the dominant cations in aerosols were Na+, (mean: 631 ng m?3), accounting for 63.8 % of the total cation and NH4 + (mean: 164 ng m?3), accounting for 13.8 % of the total cation measured in this study. The main inorganic anions were Cl? (576 ng m?3, 54.1 %) and SO4 2? (596 ng m?3, 38.0 %). The main organic anion was oxalate (18 ng m?3). Crustal enrichment factor calculations identified 62 % of the trace elements measured (Cu, Ni, V, Co, Al, Mn, Fe, Sc, and Cr) with crustal origin. Single particle analysis demonstrated that 40 % of the aerosol particles examined were Cl? rich particles as sodium chloride from seawater and 34 % of the total particles were Si-rich particles, mainly in the form of aluminosilicates from dust material. Based on the combination of air-mass trajectories, cluster analysis and principal component analysis, the major sources of these PM2.5 particles include marine, Saharan dust and biomass burning from West Africa; however, volcanic emissions from the Soufriere Hills in Montserrat had significant impact on aerosol composition in this region at the time of sample collection.  相似文献   

18.
The concentrations of PM10, PM2.5 and their water-soluble ionic species were determined for the samples collected during January to December, 2007 at New Delhi (28.63° N, 77.18° E), India. The annual mean PM10 and PM2.5 concentrations (± standard deviation) were about 219 (± 84) and 97 (±56) μgm−3 respectively, about twice the prescribed Indian National Ambient Air Quality Standards values. The monthly average ratio of PM2.5/PM10 varied between 0.18 (June) and 0.86 (February) with an annual mean of ∼0.48 (±0.2), suggesting the dominance of coarser in summer and fine size particles in winter. The difference between the concentrations of PM10 and PM2.5, is deemed as the contribution of the coarse fraction (PM10−2.5). The analyzed coarse fractions mainly composed of secondary inorganic aerosols species (16.0 μgm−3, 13.07%), mineral matter (12.32 μgm−3, 10.06%) and salt particles (4.92 μgm−3, 4.02%). PM2.5 are mainly made up of undetermined fractions (39.46 μgm−3, 40.9%), secondary inorganic aerosols (26.15 μgm−3, 27.1%), salt aerosols (22.48 μgm−3, 23.3%) and mineral matter (8.41 μgm−3, 8.7%). The black carbon aerosols concentrations measured at a nearby (∼300 m) location to aerosol sampling site, registered an annual mean of ∼14 (±12) μgm−3, which is significantly large compared to those observed at other locations in India. The source identifications are made for the ionic species in PM10 and PM2.5. The results are discussed by way of correlations and factor analyses. The significant correlations of Cl, SO42−, K+, Na+, Ca2+, NO3 and Mg2+ with PM2.5 on one hand and Mg2+ with PM10 on the other suggest the dominance of anthropogenic and soil origin aerosols in Delhi.  相似文献   

19.
Bryansk Polesie is the most 137Cs-contaminated region of the Russian Federation after the Chernobyl NPP accident, where in 2007 (i.e., 21 years after the accident), the radiation monitoring was conducted within the Russia-Belarus Union State Program. The paper is based on the comparison of data obtained in the settlements and at the nearby landscape sites outside the villages. The 137Cs content variability in the most spread in Polesie soils, the podzols, is considered using observations obtained at the monitoring sites in Svyatsk and Demenka. It is shown that 137Cs is fixed at the surface, in the upper soil horizons, which is explained by a high soil sorption capacity. Vast crest-sink floodplains with the great contrast range of the hydromorphic features, which cause great variability of the 137Cs vertical distribution, are typical for the Polesie landscape; this fact is confirmed by observations obtained at the monitoring sites located in Starye Bobovichi and Ushcherpie. It is shown that Polesie pine forest contamination maintains higher contamination density levels compared to the nearby settlements, pastures, and meadow lands in the fluvial plains. Extrapolation of the contamination density data obtained within the first decade after the accident as of 2007, performed with allowance for the correction for decay and the comparison of these estimates with the new data accumulated in the recent years, does not show any significant contradiction.  相似文献   

20.
Quantitative environmental criteria for the radiation protection of aquatic ecosystems, namely, reference concentrations of radionuclides in water are developed. If activity concentrations of radionuclides do not exceed these levels, aquatic biota can be considered completely protected from the negative effects of ionizing radiation. Reference concentrations of radionuclides in environmental objects can be compared directly with the measurement data on radioactive contamination parameters that allows using them for the monitoring data interpretation. Reference concentrations of anthropogenic radionuclides in the sea and fresh water are calculated using the environmental criteria and are compared to the values of reference concentrations computed using the hygienic criterion. It is demonstrated that the current levels of concentration of 90Sr, 137Cs, and tritium in the seas, rivers, and lakes of Russia are considerably lower than the values of reference concentrations of these radionuclides calculated using the environmental criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号