首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The age of the Universe has been increasingly constrained by different techniques, such as the observations of type Ia supernovae (SNIa) at high redshift or dating the stellar populations of globular clusters. In this paper, we present a complementary approach using the colours of the brightest elliptical galaxies in clusters over a wide redshift range  ( z ≲ 1)  . We put new and independent bounds on the dark energy equation of state parametrized by a constant pressure-to-density ratio   w Q  and by a parameter (ξ) which determines the scaling between the matter and dark energy densities. We find that accurate estimates of the metallicities of the stellar populations in moderate and high-redshift cluster galaxies can pose stringent constraints on the parameters that describe dark energy. Our results are in good agreement with the analysis of dark energy models using SNIa data as a constraint. Accurate estimates of the metallicities of stellar populations in cluster galaxies at   z ≲ 2  will make this approach a powerful complement to studies of cosmological parameters using high-redshift SNIa.  相似文献   

2.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

3.
We present the results of a study of the morphology of the dwarf galaxy population in Abell 868, a rich, intermediate-redshift     cluster which has a galaxy luminosity function (LF) with a steep faint-end slope     . A statistical background subtraction method is employed to study the     colour distribution of the cluster galaxies. This distribution suggests that the galaxies contributing to the faint-end of the measured cluster LF can be split into three populations: dwarf irregular galaxies (dIrrs) with     dwarf elliptical galaxies (dEs) with     and contaminating background giant ellipticals (gEs) with     . The removal of the contribution of the background gEs from the counts only marginally lessens the faint-end slope     . However, the removal of the contribution of the dIrrs from the counts produces a flat LF     . The dEs and the dIrrs have similar spatial distributions within the cluster, except that the dIrrs appear to be totally absent within a central projected radius of about 0.2 Mpc     . The number densities of both dEs and dIrrs appear to fall off beyond a projected radius of ≃ 0.35 Mpc. We suggest that the dE and dIrr populations of A868 have been associated with the cluster for similar time-scales, but evolutionary processes such as 'galaxy harassment' tend to fade the dIrr galaxies while having a much smaller effect on the dE galaxies. The harassment would be expected to have the greatest effect on dwarfs residing in the central parts of the cluster.  相似文献   

4.
One of the predictions of the standard cold dark matter model is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant-density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark-matter-dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well-defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting cold dark matter as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo centre surrounded by a Navarro, Frenk & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross-section ( σ ) which has an explicit dependence with the halo dispersion velocity ( v ). If m x is the mass of the dark matter particle: σ m x ≈4×10−25 (100 km s−1  v −1) cm2 GeV−1.  相似文献   

5.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

6.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

7.
We present a semi-analytical model of star formation which explains simultaneously the observed ultraviolet (UV) luminosity function (LF) of high-redshift Lyman break galaxies (LBGs) and LFs of Lyman α emitters. We consider both models that use the Press–Schechter (PS) and Sheth–Tormen (ST) halo mass functions to calculate the abundances of dark matter haloes. The Lyman α LFs at   z ≲ 4  are well reproduced with only ≲10 per cent of the LBGs emitting Lyman α lines with rest equivalent width greater than the limiting equivalent width of the narrow band surveys. However, the observed LF at   z > 5  can be reproduced only when we assume that nearly all LBGs are Lyman α emitters. Thus, it appears that  4 < z < 5  marks the epoch when a clear change occurs in the physical properties of the high-redshift galaxies. As Lyman α escape depends on dust and gas kinematics of the interstellar medium (ISM), this could mean that on an average the ISM at   z > 5  could be less dusty, more clumpy and having more complex velocity field. All of these will enable easier escape of the Lyman α photons. At   z > 5  , the observed Lyman α LF are well reproduced with the evolution in the halo mass function along with very minor evolution in the physical properties of high-redshift galaxies. In particular, up to   z = 6.5  , we do not see the effect of evolving intergalactic medium opacity on the Lyman α escape from these galaxies.  相似文献   

8.
We present optical and near-infrared colour maps of the central regions of bulges of S0 and spiral galaxies obtained with WFPC2 and NICMOS on the Hubble Space Telescope ( HST ). By combined use of HST and ground-based data, the colour information spans a region from a few tens of pc to a few kpc. In almost all galaxies, the colour profiles in the central 100–200 pc become more rapidly redder. We attribute the high central colour indices to a central concentration of dust. We infer an average extinction at the centre of A V =0.6–1.0 mag. Several objects show central dust rings or discs at subkpc scales similar to those found by others in giant ellipticals. For galactic bulges of types S0 to Sb, the tightness of the B − I versus I − H relation suggests that the age spread among bulges of early-type galaxies is small, at most 2 Gyr. Colours at 1 R eff, where we expect extinction to be negligible, are similar to those of elliptical galaxies in the Coma cluster, suggesting that these bulges formed at the same time as the bright galaxies in Coma. Furthermore, the galaxy ages are found to be independent of their environment. As it is likely that Coma was formed at redshift z >3, our bulges, which are in groups and in the field, must also have been formed at this epoch. Bulges of early-type spirals cannot be formed by secular evolution of bars at recent epochs, because such bulges would be much younger. There are three galaxies of type Sbc and later; their bulges are younger and could perhaps arise from secular evolution of transient bars. Our results are in good agreement with semi-analytic predictions, which also predict that bulges, in clusters and in the field, are as old as giant ellipticals in clusters.  相似文献   

9.
We use oblate axisymmetric dynamical models including dark haloes to determine the orbital structure of intermediate mass to massive early-type galaxies in the Coma galaxy cluster. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 per cent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models, we show that flattening by stellar anisotropy maximizes the entropy for a given density distribution. Collisionless disc merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of discs unless the influence of dissipational processes was significant.  相似文献   

10.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

11.
Understanding the origin and evolution of dwarf early-type galaxies remains an important open issue in modern astrophysics. Internal kinematics of a galaxy contains signatures of violent phenomena which may have occurred, e.g. mergers or tidal interactions, while stellar population keeps a fossil record of the star formation history; therefore studying connection between them becomes crucial for understanding galaxy evolution. Here, in the first paper of the series, we present the data on spatially resolved stellar populations and internal kinematics for a large sample of dwarf elliptical (dE) and lenticular (dS0) galaxies in the Virgo cluster. We obtained radial velocities, velocity dispersions, stellar ages and metallicities out to 1–2 half-light radii by reanalysing already published long-slit and integral-field spectroscopic data sets using the nbursts full spectral fitting technique. Surprisingly, bright representatives of the dE/dS0 class (   MB =−18.0  to −16.0 mag) look very similar to intermediate-mass and giant lenticulars and ellipticals: (1) their nuclear regions often harbour young metal-rich stellar populations always associated with the drops in the velocity dispersion profiles; (2) metallicity gradients in the main discs/spheroids vary significantly from nearly flat profiles to −0.9 dex   r −1e  , i.e. somewhat three times steeper than for typical bulges; (3) kinematically decoupled cores were discovered in four galaxies, including two with very little, if any, large-scale rotation. These results suggest similarities in the evolutionary paths of dwarf and giant early-type galaxies and call for reconsidering the role of major mergers in the dE/dS0 evolution.  相似文献   

12.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

13.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

14.
Cosmological N -body simulations were performed to study the evolution of the phase-space density   Q =ρ/σ3  of dark matter haloes. No significant differences in the scale relations   Q ∝σ−2.1  or   Q ∝ M −0.82  are seen for the 'cold' or 'warm' dark matter models. The follow-up of individual haloes from   z = 10  up to the present time indicate the existence of two main evolutionary phases: an early and fast one  (10 > z > 6.5)  , in which Q decreases on the average by a factor of 40 as a consequence of the randomization of bulk motions, and a late and long one  (6.5 > z ≥ 0)  , in which Q decreases by a factor of 20 because of mixing induced by merger events. The study of these haloes has also evidenced that rapid and positive variations of the velocity dispersion, induced by merger episodes, are related to a fast decrease of the phase-space density Q .  相似文献   

15.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

16.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

17.
We present the results of a narrow band imaging project of dwarf and giant ellipticals in the Fornax (z = 0.01), Coma (z = 0.02), A2218 (z= 0.17) and A2125 (z = 0.24) cluster. Differing from spectral line projects, we determine the mean age and metallicity of the underlying stellar populations in galaxies by measurement of the position of the RGB and MS turnoff through continuum colors (3500 Å, 4100 Å, 4675 Å and5500 Å in rest system, i.e. modified Strømgren colors). Our sample includes 120 galaxies between M = –16 and –23 in Fornax and Coma plus over 300 galaxies in distant clusters. We find the color-magnitude relation to be linear for only the brightest galaxies with an increasing amount of scatter for low luminosity ellipticals. Bright ellipticals are found to have a metallicity between –0.5 and +0.5, but low luminosity ellipticals have values that range from –2 to solar. Our age index finds a weak correlation between luminosity and mean stellar age in ellipticals such that bright ellipticals are 2 to 3 Gyrs younger than low luminosity ellipticals.  相似文献   

18.
We investigate the evolution of high-redshift seed black hole masses at late times and their observational signatures. The massive black hole seeds studied here form at extremely high redshifts from the direct collapse of pre-galactic gas discs. Populating dark matter haloes with seeds formed in this way, we follow the mass assembly of these black holes to the present time using a Monte Carlo merger tree. Using this machinery, we predict the black hole mass function at high redshifts and at the present time, the integrated mass density of black holes and the luminosity function of accreting black holes as a function of redshift. These predictions are made for a set of three seed models with varying black hole formation efficiency. Given the accuracy of present observational constraints, all three models can be adequately fitted. Discrimination between the models appears predominantly at the low-mass end of the present-day black hole mass function which is not observationally well constrained. However, all our models predict that low surface brightness, bulgeless galaxies with large discs are least likely to be sites for the formation of massive seed black holes at high redshifts. The efficiency of seed formation at high redshifts has a direct influence on the black hole occupation fraction in galaxies at   z = 0  . This effect is more pronounced for low-mass galaxies. This is the key discriminant between the models studied here and the Population III remnant seed model. We find that there exist a population of low-mass galaxies that do not host nuclear black holes. Our prediction of the shape of the M BH–σ relation at the low-mass end is in agreement with the recent observational determination from the census of low-mass galaxies in the Virgo cluster.  相似文献   

19.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

20.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号