首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ireland  Jack  Walsh  Robert W.  Galsgaard  Klaus 《Solar physics》1998,181(1):87-90
The effective visualization of three-dimensional (3d) datasets, both observationally and computationally derived, is an increasing problem in solar physics. We present here plots of computational data derived from the 3d reconstruction of the magnetic field of a loop system, rendered as anaglyphs. By combining images of the same 3d object from two slightly different angles a realistic and useful 3d effect is obtained, aiding data visualization. The application of the same technique to real solar data (such as from the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO)) is discussed.  相似文献   

2.
3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS – 12 GB) southern sky and the Galactic All Sky Survey (GASS – 26 GB) data cubes were used to demonstrate our framework’s performance. The framework can render the GASS data cube with a maximum render time <0.3 s with 1024 × 1024 pixels output resolution using three rendering workstations and eight GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.  相似文献   

3.
Kosovichev  A.G.  Duvall  T.L.  Scherrer  P.H. 《Solar physics》2000,192(1-2):159-176
The current interpretations of the travel-time measurements in quiet and active regions on the Sun are discussed. These interpretations are based on various approximations to the 3-D wave equation such as the Fermat principle for acoustic rays and the Born approximation. The ray approximation and its modifications have provided the first view of the 3-D structures and flows in the solar interior. However, more accurate and computationally efficient approximations describing the relation between the wave travel times and the internal properties are required to study the structures and flows in detail. Inversion of the large three-dimensional datasets is efficiently carried out by regularized iterative methods. Some results of time-distance inversions for emerging active regions, sunspots, meridional flows and supergranulation are presented. An active region which emerged on the solar disk in January 1998, was studied from SOHO/MDI for eight days, both before and after its emergence at the surface. The results show a complicated structure of the emerging region in the interior, and suggest that the emerging flux ropes travel very quickly through the depth range of our observations. The estimated speed of emergence is about 1.3 km s–1. Tomographic images of a large sunspot reveal sunspot `fingers' - long narrow structures at a depth of about 4 Mm, which connect the sunspot with surrounding pores of the same polarity.  相似文献   

4.
In this paper, we describe the capabilities of E3D, the Euro3D visualization tool, to handle and display data created by large Integral Field Units (IFUs) and by mosaics consisting of multiple pointings. The reliability of the software has been tested with real data, originating from the PMAS instrument in mosaic mode and from the VIMOS instrument, which features the largest IFU currently available. The capabilities and limitations of the current software are examined in view of future large IFUs, which will produce extremely large datasets. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
SECCHI-EUVI telescopes provide the first EUV images enabling a 3D reconstruction of solar coronal structures. We present a stereoscopic reconstruction method based on the Velociraptor algorithm, a multiscale optical-flow method that estimates displacement maps in sequences of EUV images. Following earlier calibration on sequences of SOHO-EIT data, we apply the algorithm to retrieve depth information from the two STEREO viewpoints using the SECCHI-EUVI telescope. We first establish a simple reconstruction formula that gives the radial distance to the centre of the Sun of a point identified both in EUVI-A and EUVI-B from the separation angle and the displacement map. We select pairs of images taken in the 30.4 nm passband of EUVI-A and EUVI-B, and apply a rigid transform from the EUVI-B image in order to set both images in the same frame of reference. The optical flow computation provides displacement maps from which we reconstruct a dense map of depths using the stereoscopic reconstruction formula. Finally, we discuss the estimation of the height of an erupting filament.  相似文献   

7.
8.
We present an analysis of images of Saturn's moon Titan, obtained by the Voyager 1 spacecraft on November 8-12, 1980. Orange filter (590-640 nm) images were photometrically corrected and a longitudinal average removed from them, leaving residual images with up to 5% contrast, and dominated by surface reflectivity. The resultant map shows the same regions observed at 673 nm by the Hubble Space Telescope (HST). Many of the same albedo features are present in both datasets, despite the short wavelength (600 nm) of the Voyager 1 images. A very small apparent longitudinal offset over the 14 year observation interval places tight constraints on Titan's rotation, which appears essentially synchronous at 15.9458±0.0016 days (orbital period =15.945421±0.000005 days). The detectability of the surface at such short wavelengths puts constraints on the optical depth, which may be overestimated by some fractal models.  相似文献   

9.
As an alternative to computationally expensive N-body simulations for gravitional clustering, the Zel'dovich approximation (ZA) was studied in 3D, 2D and 1D. Plots of the density contrast were compared against linear theory and the exact solution. The ZA was found to perform very well in the linear regime, better than linear theory, and to give a good approximation well into the non-linear regime. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Gary  G. Allen 《Solar physics》1997,174(1-2):241-263
An X-ray or EUV image of the corona or chromosphere is a 2D representation of an extended 3D complex for which a general inversion process is impossible. A specific model must be incorporated in order to understand the full 3D structure. We approach this problem by modeling a set of optically-thin 3D plasma flux tubes which we render these as synthetic images. The resulting images allow the interpretation of the X-ray/EUV observations to obtain information on (1) the 3D structure of X-ray images, i.e., the geometric structure of the flux tubes, and on (2) the internal structure using specific plasma characteristics, i.e., the physical structure of the flux tubes. The data-analysis technique uses magnetograms to characterize photospheric magnetic fields and extrapolation techniques to form the field lines. Using a new set of software tools, we have generated 3D flux tube structures around these field lines and integrated the plasma emission along the line of sight to obtain a rendered image. A set of individual flux-tube images is selected by a non-negative least-squares technique to provide a match with an observed X-ray image. The scheme minimizes the squares of the differences between the synthesized image and the observed image with a non-negative constraint on the coefficients of the brightness of the individual flux-tube loops. The derived images are used to determine the specific photospheric foot points and physical data, i.e., scaling laws for densities and loop lengths. The development has led to computer efficient integration and display software that is compatible for comparison with observations (e.g., Yohkoh SXT data, NIXT, or EIT). This analysis is important in determining directly the magnetic field configuration, which provides the structure of coronal loops, and indirectly the electric currents or waves, which provide the energy for the heating of the plasma. We have used very simple assumptions (i.e., potential magnetic fields and isothermal corona) to provide an initial test of the techniques before complex models are introduced. We have separated the physical and geometric contributions of the emission for a set of flux tubes and concentrated, in this initial study, on the geometric contributions by making approximations to the physical contributions. The initial results are consistent with the scaling laws derived from the Yohkoh SXT data.  相似文献   

11.
To understand the process of cosmic dust particle impacts and translate crater morphology on smoothed metallic surfaces to dust properties, correct calibration of the experimental impact data is needed. This article presents the results of studies of crater morphology generated by impacts using micron‐sized polypyrrole (PPy)‐coated olivine particles. The particles were accelerated by an electrostatic dust accelerator to high speeds before they impacted onto polished aluminum targets. The projectile diameter and velocity ranges were 0.3–1.2 μm and 3–7 km s?1. After impact, stereopair images of the craters were taken using scanning electron microscope and 3‐D reconstructions made to provide diameter and depth measurements. In this study, not just the dimensions of crater diameters and depths, but also the shape and dimensions of crater lips were analyzed. The craters created by the coated olivine projectiles are shown to have complicated shapes believed to be due to the nonspherical shape of the projectiles.  相似文献   

12.
A principle of restoration methods based on multichannel blind deconvolution (MBD) is introduced. The methods assume that for every un-degraded unobservable image several degraded observed images are available. It is better conditioned than classical single channel approach. The first algorithm represents a generalization of iterative deconvolution scheme introduced for single images. The second MBD algorithm is based on so-called subspace technique. The subspace method is not iterative and this possibly implies an implementation that can be computationally more efficient. Both methods are presented in applications to artificial image data (computer-generated multichannel degraded data) with known ideal image to get a comparison with restored one. Performance in a real situation on solar photosphere images is shown.  相似文献   

13.
Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.  相似文献   

14.
Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm2 thick (about 6 cm depth at a density of 1.5 g/cm3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.  相似文献   

15.
T. Dudok De Wit 《Solar physics》2006,239(1-2):519-530
A segmentation scheme for identifying large-scale structures (coronal holes, active regions, etc.) in solar extreme ultraviolet images, is presented. Unlike standard approaches, both the image intensity and the relative contribution of different wavelengths are used. Spectral information is important for compensating luminosity changes. The approach is illustrated with images taken in the extreme ultraviolet by the EIT telescope onboard SOHO. This supervised segmentation scheme, which incorporates a Bayesian classifier, is computationally simple, and can easily be used to track in near-real time structures, such as coronal holes.  相似文献   

16.
We present a comparative evaluation for automated filament detection in Hα solar images. By using metadata produced by the Advanced Automated Filament Detection and Characterization Code (AAFDCC) module, we adapted our trainable feature recognition (TFR) module to accurately detect regions in solar images containing filaments. We first analyze the AAFDCC module’s metadata and then transform it into labeled datasets for machine-learning classification. Visualizations of data transformations and classification results are presented and accompanied by statistical findings. Our results confirm the reliable event reporting of the AAFDCC module and establishes our TFR module’s ability to effectively detect solar filaments in Hα solar images.  相似文献   

17.
Astronomy has always been, and will continue to be, a data-based science, and astronomers nowadays are faced with increasingly massive datasets, one key problem of which is to efficiently retrieve the desired cup of data from the ocean. AQUAdexIM, an innovative spatial indexing and querying method, performs highly efficient on-the-fly queries under users’ request to search for Time Series Images from existing observation data on the server side and only return the desired FITS images to users, so users no longer need to download entire datasets to their local machines, which will only become more and more impractical as the data size keeps increasing. Moreover, AQUAdexIM manages to keep a very low storage space overhead and its specially designed in-memory index structure enables it to search for Time Series Images of a given area of the sky 10 times faster than using Redis, a state-of-the-art in-memory database.  相似文献   

18.
The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera(LROC). Out of these 339 craters, 214 craters are known(named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown(craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth(d) and diameter(D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter(conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth(d) and diameter(D) but 47 craters do not follow the linear relationship.We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100(29.5%) craters exist near the equator, 131(38.6%) are in the northern hemisphere and 108(31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.  相似文献   

19.
The STEREO mission provides an unprecedented opportunity to reconstruct the 3D configuration of solar features. In this work, we combine SECCHI/EUVI data from both spacecraft by means of a local correlation tracking method. The technique allows an automatic (without user intervention) matching of pixels in both images. This information is then used to triangulate the 3D coordinates of each pixel. We use the method in order to reconstruct and analyze the 3D structure of active regions. In particular, we focus on the extraction of coronal loop heights, observed nearly simultaneously in the 171, 195 and 284 Å passbands. We compare the properties of loops in the different wavelengths and extract valuable information regarding their geometry. In particular, we demonstrate that some loops that look co-spatial in the 171 Å and 195 Å images have in fact different heights and thus occupy different volumes. Our results have important implications for multi-wavelength studies of coronal loops, especially for calculations using filter-ratio techniques.  相似文献   

20.
Since 4 December 2006, the SECCHI instrument suites onboard the two STEREO A and B probes have been imaging the solar corona and the heliosphere on a wide range of angular scales. The EUVI telescopes have a plate scale of 1.7 arcseconds pixel−1, while that of the HI2 wide-angle cameras is 2.15 arcminutes pixel−1, i.e. 75 times larger, with the COR1 and COR2 coronagraphs having intermediate plate scales. These very different instruments, aimed at studying Coronal Mass Ejections and their propagation in the heliosphere, create a data visualization challenge. This paper presents FESTIVAL, a SolarSoftware package originally developed to be able to map the SECCHI data into dynamic composite images of the sky as seen by the STEREO and SOHO probes. Data from other imaging instruments can also be displayed. Using the mouse, the user can quickly and easily zoom in and out and pan through these composite images to explore all spatial scales from EUVI to HI2 while keeping the native resolution of the original data. A large variety of numerical filters can be applied, and additional data (i.e. coordinate grids, stars catalogs, etc.) can be overlaid on the images. The architecture of FESTIVAL is such that it is easy to add support for other instruments and these new data immediately benefit from the already existing capabilities. Also, because its mapping engine is fully 3D, FESTIVAL provides a convenient environment to display images from future out-of-the-Ecliptic solar missions, such as Solar Orbiter or Solar Probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号