首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The composition, volume and stratigraphic organisation of submarine fan systems deposited along continental margins are expected to reflect the landscape from which the sediment was derived. During the Late Cretaceous, the Møre‐Trøndelag margin, Norwegian North Sea was dominated by the deposition of deep‐marine fines; the emplacement of 11 sand‐rich submarine fan systems occurred only during a c. 3 Myr period in the Turonian‐Coniacian. The systems were fed by sediment that was routed through submarine canyons incised into the basin margin; the canyons are underlain by angular unconformities and are interpreted to have resulted from tectonically induced changes in slope physiography and erosion by gravity flows. The areal extent of the onshore drainage catchments that supplied sediment to the fans has been estimated based on scaling relationships derived from modern source‐to‐sink systems. The results of our study suggest that the Turonian fans were sourced by drainage catchments that were up to ca.3600 km2, extending more than ca.100 km inland from the palaeo‐shoreline. The estimated inboard catchment extent correlates with the innermost structures of a large, long‐lived, basement‐involved, normal fault complex. On the basis of our analysis, we conclude that increased sediment supply to the Turonian fan systems reflects tectonic rejuvenation of the landscape, rather than eustatic sea‐level or climate fluctuations. The duration of fan deposition is thus interpreted to reflect the ‘relaxation time’ of the landscape following tectonic perturbation, and fan system retrogradation and abandonment is interpreted to reflect the eventual depletion of the onshore sediment source. We demonstrate that a better understanding of the stratigraphic variability in deepwater depositional systems can be gained by taking a complete source‐to‐sink view of ancient sediment dispersal systems.  相似文献   

2.
《Basin Research》2018,30(2):169-186
Long‐term (106–7 yr) clastic sedimentary fluxes to the ocean provide first‐order constraints on the response of continental surfaces to both tectonic and climatic forcing as well as the supply that builds the stratigraphic record. Here, we use the dated and regionally correlated relict lateritic landforms preserved over Sub‐Saharan West Africa to map and quantify regional denudation as well as the export of main catchments for three time intervals (45–24, 24–11 and 11–0 Ma). At the scale of West Africa, denudation rates are low (ca. 7 m Myr−1) and total clastic export rate represents 18.5 × 103 km3 Myr−1. Export rate variations among the different drainage groups depend on the drainage area and, more importantly, rock uplift. Denuded volumes and offshore accumulations are of the same magnitude, with a noticeably balanced budget between the Niger River delta and its catchment. This supports the establishment of the modern Niger catchment before 29 Ma, which then provided sufficient clastic material to the Niger delta by mainly collecting the erosion products of the Hoggar hotspot swell. Accumulations on the remaining Equatorial Atlantic margin of Africa suggest an apparent export deficit but the sediment budget is complicated by the low resolution of the offshore data and potential lateral sediment supply from the Niger delta. Further distortion of the depositional record by intracontinental transient storage and lateral input or destabilization of sediments along the margin may be identified in several locations, prompting caution when deducing continental denudation rates from accumulation only.  相似文献   

3.
Present sea-floor bathymetry indicates that the continental-shelf and shelf-break morphology have some unique and predictable characteristics in areas with and without high sediment supply. Using a global bathymetry dataset in open shelf areas in front of rivers that discharge over 25 × 106 tons of sediment per year, five distinct accretionary types of shelf-break are distinguished based on along-shelf gradient variability and inferred shelf-break trajectory. Morphological characteristics of river-mouth shelves (compared with adjacent areas lateral to the immediate fairway of the river) are: (1) an overall lower gradient and greater width, and (2) a relatively high slope gradient/shelf gradient ratio. The exceptions are shelves with active shelf-edge deltas; these are narrower, steeper and have an attenuated shelf break in front of rivers. These observations are at seismic scale and have direct implications for the recognition and positioning of principal cross-shelf, supply fairways on ancient shelves or shelf margins, and therefore the potential by-pass routes for deepwater sands. Higher slope/shelf gradient ratios in areas of actively accreting margins, where the shelf-break is more prominent and easier to recognize on seismic data compared with adjacent areas, predict areas with high sediment supply. Along-strike morphological changes on supply-dominated shelves suggest that identification of the sediment-feed route and depocenter relative to the shelf break during a relative sea level cycle are critical for understanding/predicting the 3-D architecture of the shelf-slope-basin floor clinoform.  相似文献   

4.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

5.
Drainage networks link erosional landscapes and sedimentary basins in a source‐to‐sink system, controlling the spatial and temporal distribution of sediment flux at the outlets. Variations of accumulation rates in a sedimentary basin have been classically interpreted as changes in erosion rates driven by tectonics and/or climate. We studied the interactions between deformation, rainfall rate and the intrinsic dynamics of drainage basins in an experimental fold‐and‐thrust belt subjected to erosion and sedimentation under constant rainfall and shortening rates. The emergence of thrust sheets at the front of a prism may divert antecedent transverse channels (perpendicular to the structural grain) leading to the formation of longitudinal reaches, later uplifted and incorporated in the prism by the ongoing deformation. In the experiments, transverse incisions appear in the external slopes of the emerging thrust sheets. Headward erosion in these transverse channels results in divide migration and capture of the uplifted longitudinal channels located in the inner parts of the prism, leading to drainage network reorganization and modification of the sediment routing system. We show that the rate of drainage reorganization increases with the rainfall rate. It also increases in a nonlinear way with the rate of uplift. We explain this behaviour by an exponent > 1 on the slope variable in the framework of the stream power erosion model. Our results confirm the view that early longitudinal‐dominated networks are progressively replaced by transverse‐dominated rivers during mountain building. We show that drainage network dynamics modulate the distribution of sedimentary fluxes at the outlets of experimental wedges. We propose that under constant shortening and rainfall rates the drainage network reorganization can also modulate the composition and the spatial distribution of clastic fluxes in foreland basins.  相似文献   

6.
The Indus drainage has experienced major variations in climate since the Last Glacial Maximum (LGM) that have affected the volumes and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first‐order source‐to‐sink budget spanning the time since the LGM. We show that buffering of sediment in the floodplain accounts for ca. 20–25% of the mass flux. Sedimentation rates have varied greatly and must have been on average three times the recent, predamming rates. Much of the sediment was released by incision of fluvial terraces constructed behind landslide dams within the mountains, and especially along the major river valleys. New bedrock erosion is estimated to supply around 45% of the sedimentation. Around 50% of deposited sediment lies under the southern floodplains, with 50% offshore in large shelf clinoforms. Provenance indicators show a change of erosional focus during the Early Holocene, but no change in the Mid–Late Holocene because of further reworking from the floodplains. While suspended loads travel rapidly from source‐to‐sink, zircon grains in the bedload show travel times of 7–14 kyr. The largest lag times are anticipated in the Indus submarine fan where sedimentation lags erosion by at least 10 kyr.  相似文献   

7.
The application of high‐resolution seismic geomorphology, integrated with lithological data from the continental margin offshore The Gambia, northwest Africa, documents a complex tectono‐stratigraphic history through the Cretaceous. This reveals the spatial‐temporal evolution of submarine canyons by quantifying the related basin depositional elements and providing an estimate of intra‐ versus extra‐basinal sediment budget. The margin developed from the Jurassic to Aptian as a carbonate escarpment. Followed by, an Albian‐aged wave‐dominated delta system that prograded to the palaeo‐shelf edge. This is the first major delivery of siliciclastic sediment into the basin during the evolution of the continental margin, with increased sediment input linked to exhumation events of the hinterland. Subaqueous channel systems (up to 320 m wide) meandered through the pro‐delta region reaching the palaeo‐shelf edge, where it is postulated they initiated early submarine canyonisation of the margin. The canyonisation was long‐lived (ca. 28 Myr) dissecting the inherited seascape topography. Thirteen submarine canyons can be mapped, associated with a Late Cretaceous‐aged regional composite unconformity (RCU), classified as shelf incised or slope confined. Major knickpoints within the canyons and the sharp inflection point along the margin are controlled by the lithological contrast between carbonate and siliciclastic subcrop lithologies. Analysis of the base‐of‐slope deposits at the terminus of the canyons identifies two end‐member lobe styles, debris‐rich and debris‐poor, reflecting the amount of carbonate detritus eroded and redeposited from the escarpment margin (blocks up to ca. 1 km3). The vast majority of canyon‐derived sediment (97%) in the base‐of‐slope is interpreted as locally derived intra‐basinal material. The average volume of sediment bypassed through shelf‐incised canyons is an order of magnitude higher than the slope‐confined systems. These results document a complex mixed‐margin evolution, with seascape evolution, sedimentation style and volume controlled by shelf‐margin collapse, far‐field tectonic activity and the effects of hinterland rejuvenation of the siliciclastic source.  相似文献   

8.
《Basin Research》2018,30(Z1):248-268
The architecture of the Western Andes is remarkably constant between southern Peru and northern Chile. An exception, however, is present near Arica at 18°S, where the Andes change their strike direction by ca. 50° and the Coastal Cordillera is absent over an along‐strike width of 50 km. Although this feature has been mentioned in several previous studies, no effort has been made yet to describe and explain this peculiar morphology of the Western Central Andean forearc. Here, we propose a large‐scale model to explain the Myr‐long low uplift rate of the Arica Bend concerning seismic coupling and continental wedge‐top basin evolution. New geomorphic and sedimentologic data are integrated with seismicity and structural data from the literature to interpret the post‐Oligocene pattern of uplift, erosion and sediment transport to the trench. Results show that the Arica Bend has been marked by exceptionally low coastal uplift rates over post‐Oligocene timescales. In addition, this uplift anomaly at the Arica Bend correlates with relatively high sediment discharge to the corresponding trench segment since late Oligocene time. We interpret that before 25 Ma, the forming seaward concavity of the subduction zone induced trench‐parallel extension at the curvature apex of the overriding forearc. The subsequent low uplift rate would have then triggered a feedback mechanism, where the interplay between relatively low interplate friction, low coastal uplift and relatively high sediment discharge favoured Myr‐long relative subsidence at the Arica Bend, in contrast to Myr‐long uplift of the Coastal Cordillera north and south of it.  相似文献   

9.
《Basin Research》2018,30(5):965-989
Progressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, Basin Research, 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.  相似文献   

10.
We analysed modern mass‐accumulation patterns on the western Adriatic mud wedge (Italy), an elongated belt of shelf mud formed by coalesced prodeltas of the Adige, Po, and Apennine rivers, as part of an integrated strategy aimed at producing a quantitative sediment budget model for muddy continental shelves sourced by multiple compositionally distinct fluvial systems. Sediment provenance and source‐specific accumulation rates of surface sediments were quantified by combining results of grain‐size analysis and geochemical analysis of specific size fractions with bulk mass accumulation rates. Statistical classification algorithms adapted to compositional data were used to partition the total (geochemical) variation of sediment properties into size‐related and provenance‐specific factors. We identified geochemically distinct fluvial end‐member sediment types in two different grain‐size fractions, which were grouped into sediments derived from the Apennine rivers, and sediments derived from the Po and Adige rivers. Compositional fingerprints (end‐member compositions) of each source area were estimated by taking into account relative rates of fluvial sediment supply from rivers as predicted by numerical modelling. The end members allow us to explain geochemical compositional variation of mud‐wedge surface sediments in terms of provenance and size‐selective dispersal, and map mass accumulation rates of sediments from individual source areas (grain size<63 μm), as well as bulk sand accumulation rates (grain size>63 μm) across the western Adriatic mud wedge. The source‐specific rates of fine‐grained sediment supply derived from geostatistical estimates of mass‐accumulation rates were used to calibrate the numerical model of sediment supply to present‐day conditions.  相似文献   

11.
We explore the response of bedrock streams to eustatic and tectonically induced fluctuations in base level. A numerical model coupling onshore fluvial erosion with offshore wave‐base erosion is developed. The results of a series of simulations for simple transgressions with constant rate of sea‐level change (SLR) show that response depends on the relative rates of rock uplift (U) and wave‐base erosion (?w). Simple regression runs highlight the importance of nearshore bathymetry. Shoreline position during sea‐level fall is set by the relative rate of base‐level fall (U‐SLR) and ?w, and is constant horizontally when these two quantities are equal. The results of models forced by a realistic Late Quaternary sea‐level curve are presented. These runs show that a stable shoreline position cannot be obtained if offshore uplift rates exceed ?w. Only in the presence of a relatively stable shoreline position, fluvial profiles can begin to approximate a steady‐state condition, with U balanced by fluvial erosion rate (?f). In the presence of a rapid offshore decrease in rock‐uplift rate (U), short (~5 km) fluvial channels respond to significant changes in rock‐uplift rate in just a few eustatic cycles. The results of the model are compared to real stream‐profile data from the Mendocino triple junction region of northern California. The late Holocene sea‐level stillstand response exhibited by the simulated channels is similar to the low‐gradient mouths seen in the California streams.  相似文献   

12.
《Basin Research》2018,30(4):783-798
When we model fluvial sedimentation and the resultant alluvial stratigraphy, we typically focus on the effects of local parameters (e.g., sediment flux, water discharge, grain size) and the effects of regional changes in boundary conditions applied in the source region (i.e., climate, tectonics) and at the shoreline (i.e., sea level). In recent years this viewpoint has been codified into the “source‐to‐sink” paradigm, wherein major shifts in sediment flux, grain‐size fining trends, channel‐stacking patterns, floodplain deposition and larger stratigraphic systems tracts are interpreted in terms of (1) tectonic and climatic signals originating in the hinterland that propagate downstream; and (2) eustatic fluctuation, which affects the position of the shoreline and dictates the generation of accommodation. Within this paradigm, eustasy represents the sole means by which downstream processes may affect terrestrial depositional systems. Here, we detail three experimental cases in which coastal rivers are strongly influenced by offshore and slope transport systems via the clinoform geometries typical of prograding sedimentary bodies. These examples illustrate an underdeveloped, but potentially important “sink‐to‐source” influence on the evolution of fluvial‐deltaic systems. The experiments illustrate the effects of (1) submarine hyperpycnal flows, (2) submarine delta front failure events, and (3) deformable substrates within prodelta and offshore settings. These submarine processes generate (1) erosional knickpoints in coastal rivers, (2) increased river channel occupancy times, (3) rapid rates of shoreline movement, and (4) localized zones of significant offshore sediment accumulation. Ramifications for coastal plain and deltaic stratigraphic patterns include changes in the hierarchy of scour surfaces, fluvial sand‐body geometries, reconstruction of sea‐level variability and large‐scale stratal geometries, all of which are linked to the identification and interpretation of sequences and systems tracts.  相似文献   

13.
The Messinian Salinity Crisis is well known to have resulted from a significant drop of the Mediterranean sea level. Considering both onshore and offshore observations, the subsequent reflooding is generally thought to have been very sudden. We present here offshore seismic evidence from the Gulf of Lions and re‐visited onshore data from Italy and Turkey that lead to a new concept of a two‐step reflooding of the Mediterranean Basin after the Messinian Salinity Crisis. The refilling was first moderate and relatively slow accompanied by transgressive ravinement, and later on very rapid, preserving the subaerial Messinian Erosional Surface. The amplitude of these two successive rises of sea level has been estimated at ≤500 m for the first rise and 600–900 m for the second rise. Evaporites from the central Mediterranean basins appear to have been deposited principally at the beginning of the first step of reflooding. After the second step, which preceeded the Zanclean Global Stratotype Section and Point, successive connections with the Paratethyan Dacic Basin, then the Adriatic foredeep, and finally the Euxinian Basin occurred, as a consequence of the continued global rise in sea level. A complex morphology with sills and sub‐basins led to diachronous events such as the so‐called ‘Lago Mare’.This study helps to distinguish events that were synchronous over the entire Mediterranean realm, such as the two‐step reflooding, from those that were more local and diachronous. In addition, the shoreline that marks the transition between these two steps of reflooding in the Provence Basin provides a remarkable palaeogeographical marker for subsidence studies.  相似文献   

14.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

15.
《Basin Research》2018,30(Z1):568-595
The continental slopes of the South China Sea (SCS), the largest marginal sea on the continental shelf of Southeast Asia, are among the most significant shelf‐margin basins in the world because of their abundant petroleum resources and a developmental history related to sea floor spreading since Late Oligocene time. Based on integrated analyses of seismic, well‐logging and core data, we systematically document the sequence architecture and depositional evolution of the northern continental slope of the SCS and reveal its responses to tectonism, sea‐level change and sediment supply. The infill of this shelf‐margin basin can be divided into seven composite sequences (CS1–CS7) that are bounded by regional unconformities. Composite sequences CS3 to CS7 have formed since Late Oligocene time, and each of them generally reflects a regional transgressive–regressive cycle. These large cycles can be further divided into 20 sequences that are defined by local unconformities or transgressive–regressive boundaries. Depositional–geomorphological systems represented on the continental slope mainly include shelf‐edge deltas, prodelta‐slope fans, clinoforms of the shelf‐margin slope, unidirectionally migrating slope channels, incised slope valleys, muddy slope fans, slope slump‐debris‐flow complexes and large‐scale soft‐sediment deformation of bedding. Changing sea levels, reflected by evidence from sequence architecture in the study area, are generally comparable with those of the Haq (1987) global sea level curve, whereas the regional transgressions and regressions were apparently controlled by tectonic uplift and subsidence. Composite sequences CS3 and CS4 formed from Late Oligocene to Middle Miocene time and represent continental‐slope deposition during a time of northwest‐northeast seafloor spreading and subsequent development of sub‐basins in the southwest‐central SCS. The development of composite sequences CS5 to CS7 after Middle Miocene time was obviously influenced by the Dongsha Movement during convergence between the SCS and Philippine Sea plates. Climatic variations and monsoon intensification may have enhanced sediment supply during Late Oligocene‒Early Miocene (25–21 Ma) and Late Pliocene‒Pleistocene (3–0.8 Ma) times. This study indicates that shelf‐edge delta and associated slope fan systems are the most important oil/gas‐bearing reservoirs in the SCS continental‐slope area.  相似文献   

16.
The processes and deposits of deep‐water submarine channels are known to be influenced by a wide variety of controlling factors, both allocyclic and autocyclic. However, unlike their fluvial counterparts whose dynamics are well‐studied, the factors that control the long‐term behaviour of submarine channels, particularly on slopes undergoing active deformation, remain poorly understood. We combine seismic techniques with concepts from landscape dynamics to investigate quantitatively how the growth of gravitational‐collapse structures at or near the seabed in the Niger Delta have influenced the morphology of submarine channels along their length from the shelf edge to their deep‐water counterpart. From a three dimensional (3D), time‐migrated seismic‐reflection volume, which extends over 120 km from the shelf edge to the base of slope, we mapped the present‐day geomorphic expression of two submarine channels and active structures at the seabed, and created a Digital Elevation Model (DEM). A second geomorphic surface and DEM raster—interpreted to closer approximate the most recent active channel geometries—were created through removing the thickness of hemipelagic drape across the study area. The DEM rasters were used to extract the longitudinal profiles of channel systems with seabed expression, and we evaluate the evolution of channel widths, depths and slopes at fixed intervals downslope as the channels interact with growing structures. Results show that the channel long profiles have a relatively linear form with localized steepening associated with seabed structures. We demonstrate that channel morphologies and their constituent architectural elements are sensitive to active seafloor deformation, and we use the geomorphic data to infer a likely distribution of bed shear stresses and flow velocities from the shelf edge to deep water. Our results give new insights into the erosional dynamics of submarine channels, allow us to quantify the extent to which submarine channels can keep pace with growing structures, and help us to constrain the delivery and distribution of sediment to deep‐water settings.  相似文献   

17.
《Basin Research》2018,30(4):746-765
This study of Eocene carbonate succession in the Dinaric Foreland Basin of northern Dalmatia, Croatia, integrates palaeontological and sedimentological data to document a range of carbonate ramps formed intermittently during the basin tectonic development. The end‐Cretaceous basal erosional unconformity records the coupling of Adria and Eurasia crustal plates, with an antiformal uplift along their suture zone. The overlying late Ypresian carbonate ramp, spanning biozones SBZ 11–12, developed on the forebulge flank of a shallow‐marine early synclinal basin. Basal grainstone/packstone facies, dominated by encrusting foraminifers with alveolinids and miliolids, pass upwards into packstones dominated by miliolids and rotaliids with bryozoan and echinoid fragments, indicating an increased bathymetry of the retreating forebulge flank. Deposition of grainstone facies preceded an end‐Ypresian (SBZ 12/13 transition) subaerial exposure due to post‐subductional isostatic uplift. The younger, middle to late Eocene carbonate ramps (SBZ 13–19) formed episodically as perched isolated features on blind‐thrust anticlines in a bathymetrically diversified wedge‐top basin, where phases of clastic and skeletal biogenic sedimentation alternated due to disharmonic thrusting and relative sea‐level changes. Clastic sedimentation reflects anticline crest erosion and a forced‐regressive progradation of gravelly foreshore and sandy shoreface facies over heterolithic offshore‐transition and muddy offshore facies on the anticline flank. Biogenic sedimentation represents inner‐ to middle‐ramp environments, with the latter terminating bluntly in muddy offshore environment. An outer‐ramp environment, known from classic ramp models, was lacking due to bathymetric threshold. Analysis of larger benthic foraminifers (LBF), as biostratigraphic age indicators and palaeobathymetric proxies, helped distinguish systems tracts and determine their time span. A comparison of local and global sea‐level changes allowed the interplay of tectonic and eustatic forcing to be deciphered for the study area.  相似文献   

18.
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan–Kerala Basin, coupled with a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and offshore sediment loading in order to test competing conceptual models for the development of high‐elevation passive margins. The Konkan–Kerala Basin contains an estimated 109 000 km3 of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore infer that flexure is an important component in the development of the Western Indian Margin. There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic.  相似文献   

19.
Slope–channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pbex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.  相似文献   

20.
At high‐latitude continental margins, large‐scale submarine sliding has been an important process for deep‐sea sediment transfer during glacial and interglacial periods. Little is, however, known about the importance of this process prior to the arrival of the ice sheet on the continental shelf. Based on new two‐dimensional seismic data from the NW Barents Sea continental margin, this study documents the presence of thick and regionally extensive submarine slides formed between 2.7 and 2.1 Ma, before shelf‐edge glaciation. The largest submarine slide, located in the northern part of the Storfjorden Trough Mouth Fan (TMF), left a scar and is characterized by an at least 870‐m‐thick interval of chaotic to reflection‐free seismic facies interpreted as debrites. The full extent of this slide debrite 1 is yet unknown but it has a mapped areal distribution of at least 10.7 × 103 km2 and it involved >4.1 × 10km3 of sediments. It remobilized a larger sediment volume than one of the largest exposed submarine slides in the world – the Storegga Slide in the Norwegian Sea. In the southern part of the Storfjorden TMF and along the Kveithola TMF, the seismic data reveal at least four large‐scale slide debrites, characterized by seismic facies similar to the slide debrite 1. Each of them is ca. 295‐m thick, covers an area of at least 7.04 × 103 km2 and involved 1.1 × 10km3 of sediments. These five submarine slide debrites represent approximately one quarter of the total volume of sediments deposited during the time 2.7–1.5 Ma along the NW Barents Sea. The preconditioning factors for submarine sliding in this area probably included deposition at high sedimentation rate, some of which may have occurred in periods of low eustatic sea‐level. Intervals of weak contouritic sediments might also have contributed to the instability of part of the slope succession as these deposits are known from other parts of the Norwegian margin and elsewhere to have the potential to act as weak layers. Triggering was probably caused by seismicity associated with the nearby and active Knipovich spreading ridge and/or the old tectonic lineaments within the Spitsbergen Shear Zone. This seismicity is inferred to be the main influence of the large‐scale sliding in this area as this and previous studies have documented that sliding have occurred independently of climatic variations, i.e. both before and during the period of ice sheets repeatedly covering the continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号