首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using the dispersion relation of water surface waves, we derive the slope wavenumber spectrum models of capillary and capillary-gravity waves. Simultaneously, by using the slope wavenumber models, the dependence of the slope wavenumber spectrum on wind speed is analyzed using data obtained in an experiment which was performed in a laboratory wind wave tank. Generally speaking, the slope wavenumber spectra are influenced profoundly by the wind speed above water surface. The slope wavenumber spectrum increases with wind speed obviously and do not cross each other for different wind speeds. But, for the same wind speed, the slope wavenumber spectra are essentially identical, even though the capillary and capillary-gravity waves are excited at different times and locations. Furthermore, the slope wavenumber spectra obtained from the models agree quite well with experimental results as regards both the values and the shape of the curve.  相似文献   

2.
Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.  相似文献   

3.
Abstract The author‘s combined numerical model consisting of a third generation shallow water wave model and a 3-D tide-surge model with wave-dependent surface wind stress were used to study the influence of waves on fide-surge motion. For the typical weather case, in this study, the magnitude and mechanism of the influence of waves on tide-surges in the Bohai Sea were revealed for the first time. The results showed that although consideration of the wave-dependent surface wind stresses raise slightly the traditional surface wind stress, due to the accumulated effects, the computed results are improved on the whole. Storm level maximum modulation can reach 0.4 m. The results computed by the combined model agreed well with the measured data.  相似文献   

4.
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.  相似文献   

5.
A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energy(TKE) budget. A set of numerical simulations was conducted,(1) with and without rotation,(2) at different latitudes(10°N, 30°N, 45°N, 60°N, and 80°N),(3) with wave breaking and with Langmuir circulation, and(4) under different wind speeds(5, 10, 20, and 30 m/s). The results show that eddy viscosity decreases when rotation is included, indicating that rotation weakens the turbulence strength. The TKE budget become tight with rotation and the effects of rotation grow with latitude. However, rotation become less important under Langmuir circulation since the transport term is strong in the vertical direction. Finally, simulations were conducted based on field data from the Boundary Layer and Air-Sea Transfer Low Wind(CBLAST-Low) experiment. The results, although more complex, are consistent with the results obtained from earlier simulations using ideal numerical conditions.  相似文献   

6.
A Constrained Interpolation Profile(CIP)-based model is developed to predict the mooring force of a two- dimensional floating oil storage tank under wave conditions, which is validated against to a newly performed experiment. In the experiment, a box-shaped floating oil storage apparatus is used. Computations are performed by an improved CIP-based Cartesian grid model, in which the THINC/SW scheme(THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A multiphase flow solver is adopted to treat the water-air-body interactions. The Immersed Boundary Method(IBM) is implemented to treat the body surface. Main attention is paid to the sum force of mooring line and velocity field around the body. It is found that the sum force of the mooring line increases with increasing wave amplitude. The body suffers from water wave impact and large body motions occur near the free surface. The vortex occurs near the sharp edge, i.e., the sharp bottom corners of the floating oil storage tank and the vortex shedding can be captured by the present numerical model. The present model could be further improved by including turbulence model which is currently under development. Comparison between the computational mooring forces and the measured mooring forces is presented with a reasonable agreement. The developed numerical model can predict the mooring line forces very well.  相似文献   

7.
In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog’s structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.  相似文献   

8.
A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.  相似文献   

9.
Whitecapping plays an important role in many air-sea exchange and upper ocean processes. Traditionally, whitecap coverage is parameterized as a function of wind speed only. At present, the relative speed of ocean current to wind is considered to be important in the air-sea exchange parameterization which is the function of wind speed only. In this paper, the effects of ocean surface velocity (current velocity and wave induced velocity) and the wave parameters on whitecap coverage through relative speeds are investigated, by applying a 2-parameter whitecap coverage model to the Atlantic Ocean. It is found that the impacts of both current and wave on whitecap coverage are considerable in the most part of the Atlantic Ocean. It is interesting that the effect of wave is more significant than that of current.  相似文献   

10.
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately.  相似文献   

11.
The destructiveness of impulse waves generated by landslides(IWL) originates from the wave's movement and load, wherein the impulse wave's load is the major cause of sub-aerial building damage and casualties. In this study, an experiment involving 16 groups of physical tests for the wave pressure generated by a landslide was designed, consisting of 4 sets of IWL and 4 opposite bank slope angles. A high-frequency strain system was used to measure the total pressure of the impulse wave in a water tank. The tests showed that the dynamic pressure caused by the IWL can be divided into two types: impact pressure generated by the jetflow and the pulsating pressure caused by the wave. Under the same impulse wave conditions, the maximum run-up becomes smaller as the opposite bank's slope angle increases, and the jetflow maximum impact pressure experienced by the opposite bank increases, while the maximum pulsating pressure caused by the impulse wave is slightly decreased. Different from previous studies, the spatial maximum pressure distributions of the wave generated by landslide were concluded that the position of the maximum pulsating pressure appears adjacent to the still water surface, and the overall spatial distribution pattern of maximum wave pressure is presented as an inclined "M" shape.Meanwhile, this study is the first to quantitatively analyzed that impact pressure has a very short action time, is even 7 times of the pulse pressure value, and there is a simple mathematical linear relationship between the two. Currently, some wave-load formulas for wind waves and tides are not applicable to calculating the loads of IWL. Research on the load of IWL will explain the hazard of impulse wave very clearly, and will greatly contribute to hazard prevention, mitigation and risk assessment work associated with IWL.  相似文献   

12.
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio (ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front (ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting (WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer (MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.  相似文献   

13.
Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.  相似文献   

14.
High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area. Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.  相似文献   

15.
Laboratory experiments were conducted to investigate the evolution of interfacial internal solitary waves(ISWs) incident on a triangular barrier. ISWs with different amplitudes were generated by gravitational collapse. The ISW energy dissipation and turbulence processes were calculated as waves passed over the triangular barrier. Experimental results showed that ISWs were reflecting back off the triangular barrier, and shoaling ISWs led to wave breaking and mixing when waves propagated over the obstacle. Wave instability created the dissipation of energy as it was transmitted from waves to turbulence. The rate of ISW energy dissipation, the maximum turbulent dissipation, and the buoyancy diffusivity linearly increased with the increase in the incident wave energy.  相似文献   

16.
A combined numerical model of wind, wave, tide, and storm surges was built on the basis of the “wind field model in limited sea surface areas”. When used to forecast the sea surface wind, wave height and water level, it can describe them very well. Contribution No. 4108 from the Institute of Oceanology, Chinese Academy of Sciences. This work supported by Stress Project (KZ952-S1-420), Chinese Academy of Sciences; 863 Project (863-818-06-05), and (863-818-Q-07)  相似文献   

17.
This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s~(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.  相似文献   

18.
A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.  相似文献   

19.
Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the “3/2-power law” (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves. Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.  相似文献   

20.
A VOF-based numerical model for breaking waves in surf zone   总被引:2,自引:0,他引:2  
This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and (he k-s equations for turbulence kinetic energy k and turbulence dissipation rate e. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号