首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The North Sea giant sand injectite province (NSGSIP) is the global type area for large‐scale sandstone intrusion complexes. Despite decades of research on the NSGSIP, this paper presents the first detailed case study in which all aspects of the intrusion process have been constrained, including fluid and sediment sources, injection timing and driving mechanisms. The study describes and analyses high‐amplitude discordant amplitude anomalies within the Oligocene succession in the eastern North Sea, which are interpreted as large‐scale brine‐saturated sand injectites. Potential feeder conduits extending from the top of the Paleocene Lista Formation to the base of the injectites indicate that the source sand was located within the Lista Formation; possibly deposited in a distinct valley cut into the top of the Chalk Group. The geometry of the observed injectites ranges from a basal sill with wings to V‐shaped and conical; their dimensions range from 300 to 3700 m in width and up to 150 m in height. In all cases, a significant deformation of the overburden is observed. The study area is located in the Ringkøbing‐Fyn High area above the basement high separating two smaller Paleozoic half‐grabens. During the Oligocene, rapid and significant differential loading occurred. We interpret that the injectites formed due to remobilization of the source sand facilitated by overpressure caused by differential loading combined with a possible influx of fluids from the deeper succession. The case study has with its assessment of the full injection system, implications for the understanding of subsurface remobilization processes and furthermore for oil and gas exploration in the eastern North Sea.  相似文献   

2.
The Central Graben in the Danish North Sea sector consists of a series of N–S to NW–SE trending, eastward‐tilted half‐grabens, bound to the east by the Coffee Soil Fault zone. This fault zone has a complex Jurassic history that encompasses at least two fault populations; N–S to NNW–SSE striking faults active in the Late Aalenian–Early Oxfordian, and NNW–SSE to WNW–ESE striking faults forming in Late Kimmeridgian time (sensu gallico), following a short period of tectonic quiescence. Sediment transport across the Coffee Soil Fault zone was controlled by fault array evolution, and in particular the development of relay ramps that formed potential entry points for antecedent drainage systems from the Ringkøbing–Fyn High east of the rift. Fault and isochore trends of the Upper Kimmeridgian–Lower Volgian succession in the northeast Danish Central Graben show that accommodation space was initially generated close to several minor, isolated or overlapping faults. Subsidence became focused along a few master faults in the Early Volgian through progressive linkage of selected faults. Seismic time isochore geometries, seismic facies, amplitude trends and well ties indicate the presence of coarse clastic lithologies locally along the fault zone. The deposits probably represent submarine mass flow deposits supplied from footwall degradation and possibly also from the graben hinterland via a relay ramp. The latter source appears to have been cut off as the relay ramp was breached and the footwall block are uplifted. Fault growth and linkage processes thus controlled the spatial and temporal trends of accommodation space generation and sediment supply to the rift basin.  相似文献   

3.
A synthesis has been undertaken based on regionally compiled data from the post early Eocene foreland basin succession of Svalbard. The aim has been to generate an updated depositional model and link this to controlling factors. The more than kilometer thick progradational succession includes the offshore shales of the Gilsonryggen Member of the Frysjaodden Formation, the shallow marine sandstones of the Battfjellet Formation and the predominantly heterolithic Aspelintoppen Formation, together recording the progressive eastwards infill of the foredeep flanking the West Spitsbergen fold‐and‐thrust belt. Here we present a summary of the paleo‐environmental depositional systems across the basin, their facies and regional distribution and link these together in an updated depositional model. The basin‐margin system prograded with an ascending shelf‐edge trajectory in the order of 1°. The basin fill was bipartite, with offset stacked shelf and shelf‐edge deltas, slope clinothems and basin floor fans in the western and deepest part and a simpler architecture of stacked shelf‐deltas in the shallower eastern part. We suggest a foredeep setting governed by flexural loading, likely influenced by buckling, and potentially developing into a wedge top basin in the mature stage of basin filling. High‐subsidence rates probably counteracted eustatic falls with the result that relative sea‐level falls were uncommon. Distance to the source terrain was small and sedimentation rates was temporarily high. Time‐equivalent deposits can be found outbound of Stappen High in the Vestbakken Volcanic Province and the Sørvestsnaget Basin 300 km further south on the Barents Shelf margin. We cannot see any direct evidence of coupling between these more southerly systems and the studied one; southerly diversion of the sediment‐routing, if any, may have taken place beyond the limit of the preserved deposits.  相似文献   

4.
The Limón back‐arc basin belongs to the southern Central American arc‐trench system and is situated at the east coast of Costa Rica. The basin‐fill consists of Late Cretaceous to Pleistocene sedimentary rocks. A northern and a southern sub‐basin can be defined, separated by the E–W‐trending Trans Isthmic Fault System. The North Limón Basin is nearly undeformed, whereas the South Limón Basin is characterized by a fold‐and‐thrust belt. Both sub‐basins have a very similar sedimentary fill and can act as a natural laboratory for reconstructing controlling factors of arc‐related sedimentary basins as well as the influence of deformation on a basin system. Modelling focused on burial history and temperature evolution. Two‐dimensional simulations were carried out with the software PetroMod®. The geohistory curve of the North Limón Basin is overall linear, indicating continuous subsidence. The South Limón Basin is also characterized by continuous subsidence, but rates strongly increased at the beginning of the Neogene. Despite a rapid Plio‐Pleistocene deformation of the fold‐and‐thrust belt, the present‐day temperature field is not disturbed in that area. The modelling results indicate a mean heat flow of 60 mW m?2 for the North Limón Basin and 41 mW m?2 for the South Limón Basin. These values are low compared with other back‐arc basins. The lower values are attributed to the following effects: (1) underlying basaltic crust, (2) the lack of an initial rift phase, (3) the low extension rates, (4) absence of volcanic activity and (5) insulation effects of a thick sediment pile. The reasons for the locally lower heat flow in the southern sub‐basin can be found in the low‐angle subduction of the Cocos Ridge. Owing to the low subduction angle, the cool fore‐arc mantle‐wedge below the island‐arc is pushed backwards increasing the cooled area.  相似文献   

5.
The location, shape and stacking pattern of deep‐marine clastic sediments on drifting stage passive continental margins are strongly influenced by the slope and basin floor topography. The tectonic control on sediment routes and dispersal patterns, however, is less understood on rift margins, particularly the impact of subaqueous transfer zones or relay ramps. In this study, an area of the Palaeocene marine syn‐rift succession in the Vøring Basin is mapped in detail to unravel the relationship between fault geometries and sedimentary infill patterns. Using root‐mean‐square (RMS) amplitudes and deposit thicknesses interpreted from seismic data, sedimentary elements in the Fenris Graben and the Gjallar Ridge are related to the fault patterns and the overall basin geometry. Older deposits are found to be aligned parallel to the basin axis, with the greatest sediment thicknesses on the hanging walls and adjacent to rotated faults. The main sediment supply is interpreted to be sourced from the Vøring Marginal High and Greenland, presumably containing a significant proportion of coarser grained material and comprising numerous local depocentres. With continued rifting and decreased fault activity, finer grained deposition draped the previous basin infill and smoothed the basin floor topography. Deposits close to the foot of relay ramps along the Gjallar Ridge, however, suggest that the high may have acted as a local sediment source leading to local depocentres. Transfer zones played a significant role in sediment transport during the early rifting phase, and were able to maintain some influence into the late rifting and early drifting stage. Identification of early‐ and late‐stage transfer zones may therefore help in locating coarser grained depocentres and potential hydrocarbon reservoirs.  相似文献   

6.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

7.
《Basin Research》2018,30(2):249-278
The Turonian‐Coniacian Smoky Hollow Member of the Straight Cliffs Formation in the Kaiparowits basin of southern Utah records a stratigraphic transition from isolated fluvial channel bodies to increasingly amalgamated channel belts capped by the Calico bed, a sheet‐like sand‐gravel unit. Characteristics of the Smoky Hollow Member are consistent with a prograding distributive fluvial system including: up‐section increases in average grain size, bed thickness, channel‐body amalgamation, a fan‐shaped planform morphology and a downstream increase in channel sinuosity. The system prograded to the northeast based on thickness and facies patterns, and palaeocurrent indicators. This basin‐axial sediment‐dispersal trend, which was approximately parallel to the fold‐thrust belt at this latitude, is supported by provenance data including detrital zircons and modal sandstone compositions indicating sediment derivation mainly from the Mogollon Highlands and Cordilleran magmatic arc to the southwest, with episodic input from the more proximal Sevier fold‐thrust belt to the west. Progradation occurred during a eustatic still‐stand, relatively stable climatic conditions, and continuous tectonic subsidence, thus suggesting increased extrabasinal sediment supply as a primary control on basin‐fill. Progradation of the Smoky Hollow Member fluvial system culminated in a ~2–3 My hiatus at the top of the lower Calico bed. Correlation with the Notom delta of the Ferron Sandstone, 80 km northeast in the Henry basin, is proposed on the basis of facies relationships and geochronology. The Calico bed unconformity is linked to regional tectonically driven tilting and erosion observed in both basins.  相似文献   

8.
The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting.  相似文献   

9.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

10.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

11.
《Basin Research》2018,30(3):426-447
Integration of detrital zircon geochronology and three‐dimensional (3D) seismic‐reflection data from the Molasse basin of Austria yields new insight into Oligocene‐early Miocene palaeogeography and patterns of sediment routing within the Alpine foreland of central Europe. Three‐dimensional seismic‐reflection data show a network of deep‐water tributaries and a long‐lived (>8 Ma) foredeep‐axial channel belt that transported Alpine detritus greater than 100 km from west to east. We present 793 new detrital zircon ages from 10 sandstone samples collected from subsurface cores located within the seismically mapped network of deep‐water tributaries and the axial channel belt. Grain age populations correspond with major pre‐Alpine orogenic cycles: the Cadomian (750–530 Ma), the Caledonian (490–380 Ma) and the Variscan (350–250 Ma). Additional age populations correspond with Eocene‐Oligocene Periadriatic magmatism (40–30 Ma) and pre‐Alpine, Precambrian sources (>750 Ma). Although many samples share the same age populations, the abundances of these populations vary significantly. Sediment that entered the deep‐water axial channel belt from the west (Freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable age distributions that include populations of Variscan, Caledonian and Cadomian zircon at modest abundances (15–32% each). Sandstone from a shallow marine unit proximal to the northern basin margin consists of >75% Variscan (350–300 Ma) zircon, which originated from the adjacent Bohemian Massif. Mixing calculations based on the Kolmogorov–Smirnoff statistic suggest that the Alpine fold‐thrust belt south of the foreland was also an important source of detritus to the deep‐water Molasse basin. We interpret evolving detrital zircon age distributions within the axial foredeep to reflect a progressive increase in longitudinal sediment input from the west (Freshwater Molasse) and/or southwest (Inntal fault zone) relative to transverse sediment input from the fold‐thrust belt to the south. We infer that these changes reflect a major reorganization of catchment boundaries and denudation rates in the Alpine Orogen that resulted in the Alpine foreland evolving to dominantly longitudinal sediment dispersal. This change was most notably marked by the development of a submarine canyon during deposition of the Upper Puchkirchen Formation that promoted sediment bypass eastward from Freshwater Molasse depozones to the Molasse basin deep‐water axial channel belt. The integration of 3D seismic‐reflection data with detrital zircon geochronology illustrates sediment dispersal patterns within a continental‐scale orogen, with implications for the relative role of longitudinal vs. transverse sediment delivery in peripheral foreland basins.  相似文献   

12.
The late Palaeozoic to Triassic sedimentary record of the central Argentinean offshore was analysed through the integration of data from exploratory wells and 2D seismic lines. Our interpretations were combined with existing ones in Argentina, Uruguay, Brazil and South Africa for their analysis in the late Palaeozoic south‐western Gondwana context. The mapped upper Palaeozoic‐Lower Triassic stratigraphic record offshore Argentina bears a thickness of +7000 m south of the Colorado basin and encompasses the time span between Pennsylvanian and Lower Triassic; this means that it triples that of the Sierras de la Ventana of Argentina and involves a far larger time span. On the basis of seismic stratigraphic interpretations in localities near the coast, we interpret that a strong denudation process removed a great portion of the stratigraphic record in the Sierras de la Ventana, the surrounding plains and the Tandilia system of Buenos Aires. The seismic stratigraphic configuration of the late Palaeozoic succession shows continuous and parallel reflections in a wide sediment wedge extending for more than 1000 km between the Gondwanides orogen core to the south and offshore Uruguay to the north. Two salient aspects of this sedimentary wedge are that no flexural depocentre was observed at the Ventania fold belt front, and that deformation in the orogenic front is post‐Lower Triassic. The original westwards extent of the basin is interpreted to have encompassed the whole of Buenos Aires province in continuity with the Chacoparaná basin; to the east continuity and a straightforward correlation with the Karoo basin was interpreted. The name of Hespérides Basin is proposed herein to refer to a Pennsylvanian to Lower Triassic basin mainly controlled by dynamic subsidence that encompasses and exceeds the area of the Sauce Grande and Colorado basins and the Claromecó fore‐deep in Argentina. The Hespérides basin is interpreted to have been in lateral continuity with the Kalahari, Karoo and Chacoparaná basins of Africa and South America forming a +3 000 000 sq. km depocentre.  相似文献   

13.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

14.
Source‐to‐sink studies and numerical modelling software are increasingly used to better understand sedimentary basins, and to predict sediment distributions. However, predictive modelling remains problematic in basins dominated by salt tectonics. The Lower Cretaceous delta system of the Scotian Basin is well suited for source‐to‐sink studies and provides an opportunity to apply this approach to a region experiencing active salt tectonism. This study uses forward stratigraphic modelling software and statistical analysis software to produce predictive stratigraphic models of the central Scotian Basin, test their sensitivity to different input parameters, assess proposed provenance pathways, and determine the distribution of sand and factors that control sedimentation in the basin. Models have been calibrated against reference wells and seismic surfaces, and implement a multidisciplinary approach to define simulation parameters. Simulation results show that previously proposed provenance pathways for the Early Cretaceous can be used to generate predictive stratigraphic models, which simulate the overall sediment distribution for the central Scotian Basin. Modelling confirms that the shaly nature of the Naskapi Member is the result of tectonic diversion of the Sable and Banquereau rivers and suggests additional episodic diversion during the deposition of the Cree Member. Sand is dominantly trapped on the shelf in all units, with transport into the basin along salt corridors and as a result of turbidity current flows occurring in the Upper Missisauga Formation and Cree Member. This led to sand accumulation in minibasins with a large deposit seawards of the Tantallon M‐41 well. Sand also appears to bypass the basin via salt corridors which lead to the down‐slope edge of the study area. Sensitivity analysis suggests that the grain size of source sediments to the system is the controlling factor of sand distribution. The methodology applied to this basin has applications to other regions complicated by salt tectonics, and where sediment distribution and transport from source‐to‐sink remain unclear.  相似文献   

15.
The Nanpanjiang Basin occurs in a key position for resolving controversies of basin tectonics and patterns of plate assembly at the junction between south China and Southeast Asian plates. Paleocurrent measurements indicate that siliciclastic turbidites in the basin were sourced by the Precambrian Jiangnan uplift to the northeast, the Precambrian Yunkai uplift to the southeast and the Triassic Songma suture to the south. Detrital zircon geochronology reveals Archean (2500 Ma), Paleoproterozoic (1800–1900 Ma), Neoproterozoic (900–1000 Ma) and Paleozoic (420–460 Ma) ages consistent with derivation from the Jiangnan and Yunkai uplifts. A large Permian‐Triassic peak of 250 Ma is present in the southern basin and attenuates northward suggesting derivation from an arc developed along the Songma suture. Sandstone QFL compositions average 65/12/23% and plot in the recycled orogen field except for a few samples in the southern basin that fall in the dissected arc field. The compositions are consistent with derivation from Precambrian basement that includes orogenic complexes. In the southern basin, Middle Triassic turbidites contain greater lithics and feldspars and Lower Triassic turbidites have volcaniclastic composition consistent with derivation from a southerly arc. Our preferred interpretation is evolution from remnant basin to a large peripheral foreland with southward subduction and convergence with Indochina along the Songma suture. The previously proposed Dian‐Qiong zone is not a suture as its map location places it within carbonate platforms bounded by identical stratigraphy. The Nan‐Uttaradit zone is too distant to have provided voluminous siliciclastic flux to the basin. The Nanpanjiang Basin provides an example of the evolution of an exceptionally large foreland with far‐field rejuvenation of Precambrian uplifts and carbonate platforms that were significantly influenced by siliciclastic flux. The timing and pattern of turbidite basin fill impacted platform evolution by enabling margin progradation in areas proximal to siliciclastic sources, whereas platforms distant from sources were driven to aggradation and extreme relief with large‐scale gravitational sector collapse.  相似文献   

16.
The Western Irish Namurian Basin reassessed   总被引:1,自引:0,他引:1  
ABSTRACT Current basin models for the Western Irish Namurian Basin (WINB) envisage an elongate trough along the line of the present‐day Shannon Estuary that was infilled with clastic sediments derived from a hinterland that lay to the W or NW. This paper argues for an alternative basin configuration with source areas to the SW supplying sediment to a basin where deepest water conditions were in northern County Clare. Rapid subsidence along the present‐day Shannon Estuary ponded sediment in this area throughout the early Namurian and, only with the rapid increase of sedimentation rates within the mid‐Namurian (Kinderscoutian Stage), were substantial amounts of sediment able to prograde to the NE of the basin. This alternative model better explains the overwhelming predominance of NE‐directed palaeocurrents in the Namurian infill, but requires fundamental revisions to most aspects of current depositional models. Deep‐water black shales (Clare Shale Formation) initially accumulated throughout the region and were progressively downlapped by an unconfined turbidite system (Ross Formation) prograding to the NE. This in turn was succeeded by an unstable, siltstone‐dominated slope system (Gull Island Formation) characterized by large‐scale soft‐sediment deformation, which also prograded to the NE. In the northern‐most basin outcrops, in northern County Clare, this early phase of basin infill was developed as a condensed succession of radiolarian‐rich black shales, minor turbiditic sandstones and undisturbed siltstones. The new basin model envisages the northern exposures of County Clare to be a distal, basin floor succession whereas the traditional model considers it a relatively shallow, winnowed, basin margin succession. Later stages of basin infill consist of a series of deltaic cycles that culminate in major, erosive‐based sandstone bodies (e.g. Tullig Sandstone) interpreted either as axial, deltaic feeder channels or incised valley fills genetically unrelated to the underlying deltaic facies. Within the context of the new basin model the former alternative is most likely and estimated channel depths within the Tullig Sandstone indicate that the basal erosive surface could have been generated by intrinsic fluvial scour without recourse to base‐level fall. The northerly flowing Tullig channels pass down‐dip into isolated channel sandbodies interbedded with wave‐dominated strata that suggest the deltas of the WINB were considerably more wave‐influenced than hitherto proposed. The retreat of the Tullig delta during sea‐level rise saw the rapid southerly retrogradation of parasequences, as may be expected if the basin margin lay to the SW of the present‐day outcrops.  相似文献   

17.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

18.
Unconformities in sedimentary successions (i.e. sequence boundaries) form in response to the interplay between a variety of factors such as eustasy, climate, tectonics and basin physiography. Unravelling the origin of sequence boundaries is thus one of the most pertinent questions in the analysis of sedimentary basins. We address this question by focusing on three of the most marked physical discontinuities (sequence boundaries) in the Cenozoic North Sea Basin: top Eocene, near‐top Oligocene and the mid‐Miocene unconformity. The Eocene/Oligocene transition is characterized by an abrupt increase in sediment supply from southern Norway and by minor erosion of the basin floor. The near‐top Oligocene and the mid‐Miocene unconformity are characterized by major changes in sediment input directions and by widespread erosion along their clinoform breakpoints. The mid‐Miocene shift in input direction was followed by a marked increase in sediment supply to the southern and central North Sea Basin. Correlation with global δ18O records suggests that top Eocene correlates with a major long‐term δ18O increase (inferred climatic cooling and eustatic fall). Near‐top Oligocene does not correlate with any major δ18O events, while the mid‐Miocene unconformity correlates with a gradual decrease followed by a major long‐term increase in δ18O values The abrupt increases in sediment supply in post‐Eocene and post‐middle Miocene time correlate with similar changes worldwide and with major δ18O increases, suggesting a global control (i.e. climate and eustasy) of the post‐Eocene sedimentation in the North Sea Basin. Erosional features observed at near‐top Oligocene and at the mid‐Miocene unconformity are parallel to the clinoform breakpoints and resemble scarps formed by mass wasting. Incised valleys have not been observed, indicating that sea level never fell significantly below the clinoform breakpoint during the Oligocene to middle Miocene.  相似文献   

19.
ABSTRACT The Eridanos fluvio‐deltaic system, draining most of north‐western Europe, developed during the Late Cenozoic as a result of simultaneous uplift of the Fennoscandian shield and accelerated subsidence in the North Sea Basin. This seismo‐stratigraphic study aims to reconstruct the large‐scale depositional architecture of the deltaic portion of the basin fill and relate it to external controls. A total of 27 units have been recognized. They comprise over 62×103 km3 in the Southern North Sea Basin alone, and have an average delta surface area of 28×103 km2, which suggests that the size of the drainage area was about 1.1×106 km2. Water depth in the depocentre is seen to decrease systematically over time. This trend is interrupted by a deepening phase between 6.5 and 4.5 Ma that can be correlated with the simultaneous occurrence of increased uplift of the Fennoscandian shield, increased subsidence of the Southern North Sea Basin, and a long‐term eustatic highstand. All these observations point to a tectonic control on long‐term average rates of accommodation and supply. Controls on short‐term variations are inferred from variations in rates of sediment supply and bifurcation of the delta channel network. Both rates were initially low under warm, moist, relatively stable climate conditions. The straight wave‐dominated delta front gradually developed into a lobate fluvial‐dominated delta front. Two high‐amplitude sea‐level falls affected the Pliocene units, which are characterized by widespread delta‐front failures. Changes in relative sea level and climate became more frequent from the late Pliocene onward, as the system experienced the effects of glacial–interglacial transitions. Peaks in sedimentation and bifurcation rates were coeval with cold (glacial) conditions. The positive correlation between rates of supply and bifurcation on the one hand, and climate proxies (pollen and δ18O records) on the other hand is highly significant. The evidence presented in this study convincingly demonstrates the control of climate on time‐averaged sediment supply and channel‐network characteristics, despite the expected nonuniformity and time lags in system response. The presence of a clearly discernible climate signal in time‐averaged sediment supply illustrates the usefulness of integrated seismo‐stratigraphic studies for basin‐wide analysis of delta evolution on geological time scales.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号