首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two end‐member models have been proposed for the Paleogene Andean foreland: a simple W‐E migrating foreland model and a broken‐foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin‐wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west‐ and east‐vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present‐day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin‐fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Bárbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250‐km‐wide area comprising several deformation zones (Arizaro, Macón, Copalayo and Calchaquí) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken‐foreland model.  相似文献   

2.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   

3.
Geologic evidence across orogenic plateau margins enables the discrimination of the relative contributions of orogenic, epeirogenic and/or climatic processes that lead to growth and maintenance of those plateaus and their margins. Here, we discuss the mode of formation of the southern margin of the Central Anatolian Plateau (SCAP) and evaluate its time of formation using fieldwork in the onshore and seismic reflection data in the offshore. In the onshore, uplifted Miocene rocks in a dip‐slope topography show monocline flexure over >100 km, km‐scale asymmetric folds verging south, and outcrop‐scale syn‐sedimentary reverse faults. On the Turkish shelf, vertical faults transect the basal latest Messinian of a 10 km fold where on‐structure syntectonic wedges and synsedimentary unconformities indicate pre‐Pliocene uplift and erosion, followed by Pliocene and younger deformation. Collectively, Miocene rocks delineate a flexural monocline at plateau margin scale that is expressed along our on‐offshore sections as a kink‐band fold with a steep flank 20–25 km long. In these reconstructed sections, we estimate a relative vertical displacement of 3.8 km at rates of ca. 0.5 mm/y, and horizontal shortening values <1 %. We use this evidence together with our observations of shortening at outcrop, basin, plateau‐margin and forearc‐system scales to infer that the SCAP forms as a monoclinal flexure to accommodate deep‐seated thickening and shortening since >5 Ma, and to contextualize the plateau margin as the forearc high of the Cyprus subduction system.  相似文献   

4.
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation.  相似文献   

5.
《Basin Research》2018,30(3):564-585
Studies in both modern and ancient Cordilleran‐type orogenic systems suggest that processes associated with flat‐slab subduction control the geological and thermal history of the upper plate; however, these effects prove difficult to deconvolve from processes associated with normal subduction in an active orogenic system. We present new geochronological and thermochronological data from four depositional areas in the western Sierras Pampeanas above the Central Andean flat‐slab subduction zone between 27° S and 30° S evaluating the spatial and temporal thermal conditions of the Miocene–Pliocene foreland basin. Our results show that a relatively high late Miocene–early Pliocene geothermal gradient of 25–35 °C km−1 was typical of this region. The absence of along‐strike geothermal heterogeneities, as would be expected in the case of migrating flat‐slab subduction, suggests that either the response of the upper plate to refrigeration may be delayed by several millions of years or that subduction occurred normally throughout this region through the late Miocene. Exhumation of the foreland basin occurred nearly synchronously along strike from 27 to 30° S between ca. 7 Ma and 4 Ma. We propose that coincident flat‐slab subduction facilitated this wide‐spread exhumation event. Flexural modelling coupled with geohistory analysis show that dynamic subsidence and/or uplift associated with flat‐slab subduction is not required to explain the unique deep and narrow geometry of the foreland basin in the region implying that dynamic processes were a minor component in the creation of accommodation space during Miocene–Pliocene deposition.  相似文献   

6.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

7.
The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen‐traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low‐relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission‐track thermochronology from a ~6200‐m‐thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ~15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ~13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission‐track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes.  相似文献   

8.
《Basin Research》2018,30(Z1):142-159
Unravelling the spatiotemporal evolution of the Cenozoic Andean (Altiplano‐Puna) plateau has been one of the most intriguing problems of South American geology. Despite a number of investigations, the early deformation and uplift history of this area remained largely enigmatic. This paper analyses the Paleogene tectono‐sedimentary history of the Casa Grande Basin, in the present‐day transition zone between the northern sector of the Puna Plateau and the northern part of the Argentine Eastern Cordillera. Our detailed mapping of synsedimentary structures records the onset of regional contractional deformation during the middle Eocene, revealing reactivation of Cretaceous extensional structures and the development of doubly vergent thrusts. This is in agreement with records from other southern parts of the Puna Plateau and the Eastern Cordillera. These observations indicate the existence of an Eocene broken foreland setting within the region, characterized by low‐lying compressional basins and ranges with spatially disparate sectors of deformation, which was subsequently subjected to regional uplift resulting in the attainment of present‐day elevations during the Neogene.  相似文献   

9.
The Paradox Basin is a large (190 km × 265 km) asymmetric basin that developed along the southwestern flank of the basement‐involved Uncompahgre uplift in Utah and Colorado, USA during the Pennsylvanian–Permian Ancestral Rocky Mountain (ARM) orogenic event. Previously interpreted as a pull‐apart basin, the Paradox Basin more closely resembles intraforeland flexural basins such as those that developed between the basement‐cored uplifts of the Late Cretaceous–Eocene Laramide orogeny in the western interior USA. The shape, subsidence history, facies architecture, and structural relationships of the Uncompahgre–Paradox system are exemplary of typical ‘immobile’ foreland basin systems. Along the southwest‐vergent Uncompahgre thrust, ~5 km of coarse‐grained syntectonic Desmoinesian–Wolfcampian (mid‐Pennsylvanian to early Permian; ~310–260 Ma) sediments were shed from the Uncompahgre uplift by alluvial fans and reworked by aeolian‐modified fluvial megafan deposystems in the proximal Paradox Basin. The coeval rise of an uplift‐parallel barrier ~200 km southwest of the Uncompahgre front restricted reflux from the open ocean south and west of the basin, and promoted deposition of thick evaporite‐shale and biohermal carbonate facies in the medial and distal submarine parts of the basin, respectively. Nearshore carbonate shoal and terrestrial siliciclastic deposystems overtopped the basin during the late stages of subsidence during the Missourian through Wolfcampian (~300–260 Ma) as sediment flux outpaced the rate of generation of accommodation space. Reconstruction of an end‐Permian two‐dimensional basin profile from seismic, borehole, and outcrop data depicts the relationship of these deposystems to the differential accommodation space generated by Pennsylvanian–Permian subsidence, highlighting the similarities between the Paradox basin‐fill and that of other ancient and modern foreland basins. Flexural modeling of the restored basin profile indicates that the Paradox Basin can be described by flexural loading of a fully broken continental crust by a model Uncompahgre uplift and accompanying synorogenic sediments. Other thrust‐bounded basins of the ARM have similar basin profiles and facies architectures to those of the Paradox Basin, suggesting that many ARM basins may share a flexural geodynamic mechanism. Therefore, plate tectonic models that attempt to explain the development of ARM uplifts need to incorporate a mechanism for the widespread generation of flexural basins.  相似文献   

10.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

11.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   

12.
The transition to a post‐orogenic state in mountain ranges has been identified by a change from active subsidence to isostatic rebound of the foreland basin. However, the nature of the interplay between isostatic rebound and sediment supply, and their impact on the topographic evolution of a range and foreland basin during this transition, has not been fully investigated. Here, we use a box model to explore the syn‐ to post‐orogenic evolution of foreland basin/thrust wedge systems. Using a set of parameter values that approximate the northern Pyrenees and the neighbouring Aquitaine foreland basin, we evaluate the controls on sediment drape over the frontal parts of the retro‐wedge following cessation of crustal thickening. Conglomerates preserved at approximately 600‐m elevation, which is ~ 300 m above the present mountain front in the northern Pyrenees are ca. 12 Ma, approximately 10 Myrs younger than the last evidence of crustal thickening in the wedge. Using the model, this post‐orogenic sediment drape is explained by the combination of a sustained, high sediment influx from the range into the basin relative to the efflux out of the basin, combined with cessation of the generation of accommodation space through basin subsidence. Post‐orogenic sediment drape is considered a generic process that is likely to be responsible for elevated low‐gradient surfaces and preserved remnants of continental sedimentation draping the outer margins of the northern Pyrenean thrust wedge.  相似文献   

13.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   

14.
The Xunhua, Guide and Tongren intermontane basin system in the NE Tibetan Plateau, situated near the Xining basin to the N and the Linxia basin to the E, is bounded by thrust fault‐controlled ranges. These include to the N, the Riyue Shan, Laji Shan and Jishi Shan ranges, and to the S the northern West Qinling Shan (NWQ). An integrated study of the structural geology, sedimentology and provenance of the Cenozoic Xunhua and Guide basins provides a detailed record of the growth of the NE Tibetan Plateau since the early Eocene. The Xining Group (ca. 52–21 Ma) is interpreted as consisting of unified foreland basin deposits which were controlled by the bounding thrust belt of the NWQ. The Xunhua, Guide and Xining subbasins were interconnected prior to later uplift and damming by the Laji Shan and Jishi Shan ranges. Their sediment source, the NWQ, is constrained by strong unidirectional paleocurrent trends towards the N, a northward fining lithology, distinct and recognizable clast types and detrital zircon ages. Collectively, formation of this mountain–basin system indicates that the Tibetan Plateau expanded into the NWQ at a time roughly coinciding with Eocene to earliest Miocene continental collision between India and Eurasia. The Guide Group (ca. 21–1.8 Ma) is inferred to have been deposited in the separate Xunhua, Guide and Tongren broken foreland basins. Each basin was filled by locally sourced alluvial fans, braided streams and deltaic‐lacustrine systems. Structural, paleogeographic, paleocurrent and provenance data indicate that thrust faulting in the NWQ stepped northward to the Laji Shan from ca. 21 to 16 Ma. This northward shift was accompanied by E–W shortening related to nearly N–S‐striking thrust faulting in Jishi Shan after 11–13 Ma. A lower Pleistocene conglomerate (1.8–1.7 Ma) was deposited by a through‐flowing river system in the overfilled and connected Guide and Xunhua basins following the termination of thrust activity. All of the basin–mountain zones developed along the Tibetan Plateau's NE margin since Indian–Tibetan continental collision may have been driven by collision‐induced basal drag of old slab remnants in the manner of N‐dipping and flat‐slab subduction, and their subsequent sinking into the deep mantle.  相似文献   

15.
The Sivas Basin, located in the Central Anatolian Plateau of Turkey, is a foreland basin that records a complex interaction between sedimentation, salt tectonics and regional shortening during the Oligo‐Miocene leading to the formation of numerous mini‐basins. The Oligocene sedimentary infill of the mini‐basins consists of a thick continental succession, the Karayün Formation, comprising a vertical succession of three main sub‐environments: (i) playa‐lake, (ii) fluvial braided, and (iii) saline lacustrine. These sub‐environments are seen as forming a large Distributive Fluvial System (DFS) modified through time as a function of sediment supply and accommodation related to regional changes in climate and tectonic regime. Within neighbouring mini‐basins and despite a similar vertical stratigraphic succession, subtle variations in facies assemblages and thickness are observed in stratigraphic units of equivalent age, thus demonstrating the local control exerted by halokinesis. Stratigraphic and stratal patterns reveal in great detail the complex interaction between salt tectonics and sedimentation including different types of halokinetic structures such as hooks, wedges and halokinetic folds. The regional variations of accommodation/sediment supply led to coeval changes in the architectural patterns recorded in the mini‐basins. The type of accommodation regime produces several changes in the sedimentary record: (i) a regime dominated by regional accommodation limits the impact of halokinesis, which is recorded as very small variations in stratigraphic thickness and facies distribution within and between mini‐basins; (ii) a regime dominated by localized salt‐induced accommodation linked to the subsidence of each individual mini‐basin enhances the facies heterogeneity within the DFS, causing sharp changes in stratigraphic thickness and facies assemblages within and between mini‐basins.  相似文献   

16.
Three successive zones of fault‐related folds disrupt the proximal part of the northern Tian Shan foreland in NW China. A new magnetostratigraphy of the Taxi He section on the north limb of the Tugulu anticline in the middle deformed zone clarifies the chronology of both tectonic deformation and depositional evolution of this collisional mountain belt. Our ~1200‐m‐thick section encompasses the upper Cenozoic terrigenous sequence within which ~300 sampling horizons yield an age span of ~8–2 Ma. Although the basal age in the Taxi He section of the Xiyu conglomerate (often cited as an indicator of initial deformation) is ~2.1 Ma, much earlier growth of the Tugulu anticline is inferred from growth strata dated at ~6.0 Ma. Folding of Neogene strata and angular unconformities in anticlines in the more proximal and distal deformed zones indicate deformation during Miocene and Early Pleistocene times, respectively. In the Taxi He area, sediment‐accumulation rates significantly accelerate at ~4 Ma, apparently in response to encroaching thrust loads. Together, growth strata, angular unconformities, and sediment‐accumulation rates document the northward migration of tectonic deformation into the northern Tian Shan foreland basin during the late Cenozoic. A progradational alluvial–lacustrine system associated with this northward progression is subdivided into two facies associations at Tugulu: a shallow lacustrine environment before ~5.9 Ma and an alluvial fan environment subsequently. The lithofacies progradation encompasses the time‐transgressive Xiyu conglomerate deposits, which should only be recognized as a lithostratigraphic unit. Along the length of the foreland, the locus of maximum shortening shifts between the medial and proximal zones of folding, whereas the total shortening across the foreland remains quite homogeneous along strike, suggesting spatially steady tectonic forcing since late Miocene times.  相似文献   

17.
Fission track thermogeochronology using detrital apatite and zircon from a synorogenic foreland basin on the northern margin of the Betic Cordillera Internal Zone is used to reconstruct the cooling and unroofing history of the sediment source areas in the Oligo-Miocene mountain belt. Previously, a heavy mineral study on the same sedimentary rocks showed that progressively deeper tectonometamorphic units were being unroofed during the latest Oligocene to middle Miocene at a minimum rate of 3  km Myr−1. The fission track data have further constrained the exhumation history showing that the structurally highest (i.e. shallowest) parts of the mountain belt (Malaguide Complex) cooled relatively slowly during the latest Oligocene–Aquitanian, while the deeper metamorphic units (Alpujarride Complex) cooled at much higher rates (up to 300 °C Myr−1) during the Burdigalian–Langhian. These fast cooling rates from synorogenic detritus are consistent with cooling rates calculated previously for the deeper parts of the early Miocene orogenic belt, using 39Ar–40Ar dating of muscovite, biotite and amphibole from basement metamorphic rocks. Rapid cooling in the early Miocene, which commenced at ≈21  Ma, is attributed to the change in process from erosional to tectonic denudation by orogen-scale extension within the eastern Betic Cordillera.

  相似文献   


18.
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block.  相似文献   

19.
Late early–early middle Miocene (Burdigalian–Langhian) time on the island of Corsica (western Mediterranean) was characterized by a combination of (i) postcollisional structural inversion of the main boundary thrust system between the Alpine orogenic wedge and the foreland, (ii) eustatic sealevel rise and (iii) subsidence related to the development of the Ligurian‐Provençal basin. These processes created the accommodation for a distinctive continental to shallow‐marine sedimentary succession along narrow and elongated basins. Much of these deposits have been eroded and presently only a few scattered outcrop areas remain, most notably at Saint‐Florent and Francardo. The Burdigalian–Langhian sedimentary succession at Saint‐Florent is composed of three distinguishing detrital components: (i) siliciclastic detritus derived from erosion of the nearby Alpine orogenic wedge, (ii) carbonate intrabasinal detritus (bioclasts of shallow‐marine and pelagic organisms), and (iii) siliciclastic detritus derived from Hercynian‐age foreland terraines. The basal deposits (Fium Albino Formation) are fluvial and composed of Alpine‐derived detritus, with subordinate foreland‐derived volcanic detritus. All three detrital components are present in the middle portion of the succession (Torra and Monte Sant'Angelo Formations), which is characterized by thin transitional deposits evolving vertically into fully marine deposits, although the carbonate intrabasinal component is predominant. The Monte Sant'Angelo Formation is characteristically dominated by the deposits of large gravel and sandwaves, possibly the result of current amplification in narrow seaways that developed between the foreland and the tectonically collapsing Alpine orogenic wedge. The laterally equivalent Saint‐Florent conglomerate is composed of clasts derived from the late Permian Cinto volcanic district within the foreland. The uppermost unit (Farinole Formation) is dominated by bioclasts of pelagic organisms. The Saint‐Florent succession was deposited during the last phase of the counterclockwise rotation of the Corsica–Sardinia–Calabria continental block and the resulting development of the Provençal oceanic basin. The succession sits at the paleogeographic boundary between the Alpine orogenic wedge (to the east), its foreland (to the west), and the Ligurian‐Provençal basin (to the northwest). Abrupt compositional changes in the succession resulted from the complex, varying interplay of post‐collisional extensional tectonism, eustacy and competing drainage systems.  相似文献   

20.
The Molasse Basin of Switzerland evolved through a distinct late Neogene history with initial development as a classic foredeep or foreland basin in response to loading of the lithosphere by the Alpine orogen. In the central and western foreland, the foredeep behaviour was terminated by deformation and uplift of the Jura Mountains in the distal regions of the foredeep. Following the Jura deformation the Plateau Molasse remained largely undeformed as it rode ‘piggy‐back’ style above the decollement feeding displacement into the Jura. Sediment accumulation data for the Molasse suggests that sedimentation in the Plateau Molasse region continued until the basin was inverted at about 5 Ma. We present a mechanical model for this sequence of events in which deformation jumps across much of the basin to the distal Jura because of the dip on the weak evaporitic decollement and the wedge‐shape of the foredeep basin. Subsequently, the Plateau Molasse remained largely undeformed as a result of continued sedimentation in a wedgetop basin, where the physical properties and geometry of the orogenic wedge combine to produce a critical wedge whose critical surface slope would be less than zero and thus should dip towards the Alpine interior. Accommodation space is created over this negative surface–slope segment of the wedge and sedimentation maintains this slope near zero, stabilizing the wedge. We present a simple analytical theory for the necessary conditions for such a ‘negative‐alpha basin’ to develop and be maintained. We compare this theory to the late Neogene evolution of the Alps, Molasse Basin and Jura Mountains and infer physical properties for the decollement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号