首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dinoflagellates in the genus Symbiodinium, including nine clades (A–I), mainly form mutualistic symbioses with corals. More than 100 Symbiodinium molecular types have been identified by the ITS2-based genotype method within any given clade, and specifically within Symbiodinium clade C. However, the genotype identification method using the ITS2 sequence is likely to lead to high diversity estimates due to the intra-genomic variations in the ITS2 space; thus, further validation is essential for a correct identification. In this study, the molecular diversity of Symbiodinium ITS2 sequences cloned from two stone corals, Acropora sp. SY-01 and Pocillopora sp. SY-05, and one soft coral, Sarcophyton sp. SY-07, living in the northern part of South China Sea (SCS), were analyzed and compared using the ITS2-based genotype identification method, coupled with ITS2-based secondary structural and phylogenetic analyses. As the result, 12 Symbiodinium ITS2 genotypes were identified, while only six and three Symbiodinium ITS2 genotypes were supported by ITS2-based secondary structural and phylogenetic analyses, respectively. In addition, no shared Symbiodinium ITS2 genotypes were observed among the three coral species, suggesting coral species-dependent Symbiodinium genotypes were within clade C. In summary, the present study provides a theoretical basis for validating the molecular diversity of Symbiodinium ITS2 genotypes in corals.  相似文献   

2.
Soil microorganisms are sensitive indicator of soil health and quality. Understanding the effects of vegetation biomass and seasonal change on soil microorganisms is vital to evaluate the soil quality and implement vegetation restoration. This study analyzed the soil phospholipid fatty acids (PLFAs) in fresh and withered Kudzu (Pueraria montana var. lobata) vegetation conditions in different seasons. The results showed that vegetation biomass and seasonal change significantly affected microbial biomass and its community structure. Both fresh and withered Kudzu cover significantly increased soil microbial biomass, and the growth effect of microbes in the soil with fresh Kudzu cover was more obvious than that with withered Kudzu cover. Compared with the dry season, the rainy season significantly increased the microbial biomass and the B/F (the ratio of bacterial to fungal PLFAs) ratio but dramatically reduced the G+/G- (the ratio of gram-positive to gram-negative bacteria PLFAs). Kudzu cover and seasonal change had a significant effect on microbial structure in soil covered by higher vegetation biomass. Furthermore, soil temperature and moisture had different correlations with specific microbial biomass in the two seasons. Our findings highlight the effect of Kudzu vine cover on the soil microenvironment and soil microhabitat, enhancing the soil quality in the Dry-hot Valley of Jinsha River, Southwest China.  相似文献   

3.
Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accurate estimation of CO2 emissions via SR. However, studies on spatio-temporal variation of SR are still scarce for semi-arid regions of North China. In this study, we conducted 12-month SR measurements in six land-use types, including two secondary forests (Populus tomentosa (PT) and Robinia pseudoacacia (RP)), three artificial plantations (Armeniaca sibirica (AS), Punica granatum (PG) and Ziziphus jujuba (ZJ)) and one natural grassland (GR), to quantify spatio-temporal variation of SR and distinguish its controlling factors. Results indicated that SR exhibited distinct seasonal patterns for the six sites. Soil respiration peaked in August 2012 and bottomed in April 2013. The temporal coefficient of variation (CV) of SR for the six sites ranged from 76.98% to 94.08%, while the spatial CV of SR ranged from 20.28% to 72.97% across the 12-month measurement. Soil temperature and soil moisture were the major controlling factors of temporal variation of SR in the six sites, while spatial variation in SR was mainly caused by the differences in soil total nitrogen (STN), soil organic carbon (SOC), net photosynthesis rate, and fine root biomass. Our results show that the annual average SR and Q10 (temperature sensitivity of soil respiration) values tended to decrease from secondary forests and grassland to plantations, indicating that the conversion of natural ecosystems to man-made ecosystems may reduce CO2 emissions and SR temperature sensitivity. Due to the high spatio-temporal variation of SR in our study area, care should be taken when converting secondary forests and grassland to plantations from the point view of accurately quantifying CO2 emissions via SR at regional scales.  相似文献   

4.
Mountainous areas exhibit highly variable decomposition rates as a result of strong local differences in climate and vegetation type. This paper describes the effect of these factors on two major determinants of the local carbon cycle: litter decomposition and carbon stabilization. In order to adequately reflect local heterogeneity, we have sampled 12 typical plant communities of the Russian Caucasus. In order to minimize confounding effects and encourage comparative studies, we have adapted the widely used tea bag index (TBI) that is typically used in areas with low decomposition. By incubating standardized tea litter for a year, we investigated whether (1) initial litter decomposition rate (k) is negatively correlated with litter stabilization (S) and (2) whether k or S exhibit correlations with altitude and other environmental conditions. Our results show that S and k are not correlated. Altitude, pH, and water content significantly influenced the stabilization factor S, while soil-freezing had no influence. In contrast, none of these factors predicted the decomposition rate k. Based on our data, we argue that collection of decomposition rates alone, as is now common practice, is not sufficient to understand carbon input to soils and can potentially lead to misleading results. Our data on community-specific decomposition and stabilization rates further constrain estimates of litter accumulation in subalpine communities and the potential effects of climate change.  相似文献   

5.
An interannual study on zooplankton abundance, biomass, and species composition was carried out during different seasons in two local coastal water types off Gopalpur, north-western Bay of Bengal. Although, Type-1 was observed with higher zooplankton abundance in comparison to Type-2, pattern of variation followed similar seasonal trends in both water types during individual years. Well pronounced seasonality was observed in zooplankton distribution. Zooplankton community was composed of 217 holoplankton and 22 meroplankton. The holoplankton community was predominated by copepod in terms of species diversity and abundance followed by hydrozoa, tintinnida, malacostraca, gastropoda, chaetognatha and chordata. The meroplankton were represented by larval forms viz. bivalve veliger, brachyuran zoea larvae, caridean larvae, copepod nauplii, fish egg and gastropod veliger. Dominance of copepod species viz. Acrocalanus longicornis, Paracalanus aculeatus and Paracalanus parvus were observed frequently in both water types. The species richness was higher in Type-1 in comparison to Type-2 during both the years. Salinity regimes and availability of phytoplankton prey influenced the distribution and species composition of zooplankton assemblage.  相似文献   

6.
Impact of anthropogenic disturbance on species diversity and vegetation structure of a lowland tropical rainforest was studied in the foothills of Eastern Himalaya, India. Tree species richness, density, basal area and the diversity indices were found significantly (P<0.05) decreased with the increasing level of disturbances whereas, shrub density, basal area and herb density significantly increased with increasing disturbance level. In case of shrubs, Simpson’s dominance index significantly (P<0.007) increased along the disturbance gradient, whereas Pielou’s evenness index significantly (P<0.005) decreased with an increasing level of disturbance. Shannon-Weiner diversity index for herbs significantly (P<0.016) increased with increasing disturbance whereas, Simpson’s dominance index was significantly (P<0.013) declined along the disturbance gradient. Results revealed that 10–50 cm dbh classes constituted the highest stem density, and highest basal area was recorded in the >100 cm dbh class in all three sites. Density of the matured trees decreased with increasing DBH whereas, tree basal area tended to increase with increasing DBH in all three sites. Tree species richness was highest in the lower DBH classes. 62.07% of the total tree species regenerated in the largely undisturbed site followed by 50% in the mildly disturbed and 26.32% in the highly disturbed site. The overall regeneration condition was found to be good in the largely undisturbed site. Mildly disturbed site exhibited fair regeneration and so was in the highly disturbed site. Discernable variations in species composition, diversity, regeneration and tree population structure revealed the impact of anthropogenic disturbances on rainforest vegetation dynamics. Higher degree of disturbance was furtherly found not only affecting species diversity but also promoting the growth of invasive weed species. Dominance of Hydnocarpus kurzii and Crypteronia paniculata in the highly disturbed site also indicated that these less-valued timber species may benefit from the vegetation mosaic produced by the disturbance; so differences in abundance of these species may be useful for bio-indication. Furthermore, present study suggests the need of adequate biodiversity conservation measures and adaptation of sustainable forest management approaches in disturbed areas of lowland tropical rainforest in the foothills of eastern Himalaya, India.  相似文献   

7.
8.
The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.  相似文献   

9.
Siberian larch (Larix sibirica Ledeb.) forests cover the largest areas in the Eurasian boreal zone, but there are insufficient data on its root system including the structure and functional traits of ectomycorrhizas (EM). The aim of this research is to find out if the morphological parameters of Larix sibirica EMs responded to the changes in elevation and main ecological factors (soil humidity, soil richness, soil acidity and habitat illumination). Using light microscopy, we studied EM diameter, root diameter, mantle width, and mantle volume share, share of tannin cells layers, EM density and EM length of Larix sibirica in two main types of plant communities along the elevation gradient at the Northern and Subpolar Urals. Differences in the environment were traced using phytoindication approach and the Ellenberg ecological scales. All the studied traits depend on the elevation and studied ecological factors. The diversity of fungal mantles is low, and the proportion of unstructured and pseudoparenchymatous mantles is high in response to the deterioration of the humidity, soil nitrogen content and acidity at higher-altitude habitats. Results of EM quantitative parameters measurements confirmed this pattern. We found a decline in the EM linear dimensions accompanied by a compensatory growth of the EM density with the raised elevation and the deterioration of environmental conditions.  相似文献   

10.
We performed a karyotype analysis on four species from Phylum Nemertea using regenerating somatic cells. Two palaeonemertean species, Cephalothrix hongkongiensis and Cephalothrix sp., had the same chromosome number (2n=28), but different karyotypes (16 m+10 sm+2 st, NF=54 and 22 m+4 sm+2 st, NF=54, respectively). The karyotypes of the two heteronemerteans, Notospermus geniculatus and Ramphogordius sanguineus were 2n=38, 30 m+6 sm+2 sm/st (NF=76/74) and 2n=56, 48 m+4 sm+4 sm/st (NF=112/108), respectively.  相似文献   

11.
The polar and nonpolar extracts of Colpomenia sinuosa, Padina pavonia, Cystoseira barbata and Sargassum vulgare collected during spring, summer and autumn were evaluated for their antifungal activities. The phytochemicals of unexplored seaweeds were analyzed by gas chromatography and mass spectrometric (GC/MS). The algal extracts were tested for their antifungal activities against Aspergillus niger, A. flavus, Penicillium parasiticus, Candida utilis and Fusarium solani. Phytochemicals were extracted from the four seaweeds with various solvents including methanol, ethanol, acetone, chloroform and dimethyl ether. Among the various extracts, methanolic extract showed the highest inhibition activity on all fungal species. Seasonal variation in antifungal activity was studied, while methanol extracts showed the best antifungal activity in spring. Cystoseira barbata was the most effective seaweed, having antifungal activity throughout the whole year. The UV-Vis phytochemical procedure and GC-MS analysis of the methanol extracts from tested species indicated the existence of different constituents. In conclusions, the compounds with antifungal activity were identified as indoles, terpenes, acetogenins, phenols, and volatile halogenated hydrocarbons.  相似文献   

12.
This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R~2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R~2 ≥ 0.9164), but a linear one with their canopy area(R~2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m~2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m~2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R~2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R~2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R~2 ≥ 0.9606) and linearly(R~2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region.  相似文献   

13.
Plant biomarkers, such as hydrocarbon waxes, are frequently found in various sediments and could be adopted as paleovegetation and paleoclimate indicators. Nevertheless, scarce researches have focused on leaf waxes in higher plants of alpine region. Herein, hydrocarbon leaf wax components of Salix oritrepha, which flourish in Nianbaoyeze Mountains in eastern Tibetan Plateau were fully discussed. The n-alkane distribution in leaves ranges from n-C21 to n-C29 with maxima at n-C25, which were entirely different with Salix taxa displayed in previous surveys in non-alpine regions. The unusual even carbon nalkenes from n-C22:1 to n-C30:1, which were thought to appear only in aquatic organisms, were firstly reported in an alpine plant. Additionally, iso-(2-methyl) alkanes, ranging from i-C23 to i-C29 with maxima at i-C25, which have been commonly reported in microorganisms, were also identified in an alpine plant for the first time. Unusual hydrocarbon distribution detected in Salix oritrepha leaf from Nianbaoyeze Mountains is most likely due to the extreme environment in such alpine region.  相似文献   

14.
One new marine oligotrich ciliate, Omegastrombidium hongkongense n. sp., was isolated from a bloom of Noctiluca scuntillans near Port Shelter, Hong Kong. The morphology and infraciliature of this new species were studied on both living and protargol-stained specimens. Its phylogenetic position was discussed based on the sequence of the small subunit rRNA gene. O. hongkongense is different from its congeners with special characters. The cells are usually heart-shaped, and the cell size usually is (20–35) × (20–30) μm in vivo. Its deep buccal cavity extends obliquely to about 1/2 of cell length. It shows prominent apical protrusion. The adoral zone of membranelles is divided into 17–19 collar membranelles and four buccal membranelles. It has one ball-like macronucleus. The girdle kinety forms a closed loop which obliquely surrounds the body. The ventral kinety and thigmotactic membranelles are not observed. The SSU rRNA sequence of O. hongkongense was close to those of Strombidium paracalkinsi and Varistrombidium kelum with approximately 99% similarity. In the phylogenetic trees, O. hongkongense can be grouped with O. elegans and V. kielum species with very low support (16% ML).  相似文献   

15.
Little information is available on biogenic elements (carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow (Huanghe) River Delta, plant samples were collected from two typical salt marshes (Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China’s average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis (P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences (P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.  相似文献   

16.
Trophic interaction among various biomass groups in a swimming crab Portunus trituberculatus polyculture pond was investigated using carbon and nitrogen stable isotope analysis. The polycultured animal species also included white shrimp Litopenaeus vannamei, short-necked clam Ruditapes philippinarum, and redlip mullet Liza haematochila. The mean δ13C value for all the biomass groups in polyculture ecosystem ranged from ?25.61‰ to ?16.60‰, and the mean δ15N value ranged from 6.80‰ to 13.09‰. Significant difference in the δ13C value was found between particulate organic matter (POM) and sediment organic matter (SOM) (P < 0.05), indicating that these two organic matter pools have different material sources. Assuming that a 13C-enrichment factor of 1.00‰ and a 15N-enrichment factor of 2.70‰ existed between consumer and prey, diets of the four cultured animals were estimated using a stable isotope mixing model. The estimated model results indicated that P. trituberculatus mainly feed on Aloidis laevis; L. vannamei mainly feed on shrimp feed; while A. laevis, R. philippinarum and L. haematochelia mainly feed on POM. Shrimp feed was also an important food source of R. philippinarum and L. haematochelia. The diets of P. trituberculatus, L. vannamei, R. philippinarum, and L. haematochila showed complementary effects in this polyculture ecosystem. Our finding indicated that the polyculture of these four organisms with suitable farming density could make an effective use of most of the food sources, which can make a highly efficient polyculture ecosystem.  相似文献   

17.
The effects of Bacillus subtilis 2-1 from the intestine of healthy sea cucumber on the growth, digestive enzyme activities and intestinal microbiota of juvenile sea cucumber (Apostichopus japonicus) were determined in the present study. Sea cucumber was fed with Sargassum thunbergii powder supplemented with B. subtilis 2-1 at different concentrations varying among 0 (control), 105, 107, and 109 CFU g?1 for 8 weeks. Results showed that the growth performance and intestinal amylase and trypsin activities were significantly increased by dietary B. subtilis 2-1 at 109 CFU g?1 (P < 0.05). However, dietary B. subtilis 2-1 had no significant influence on the lipase activity in sea cucumber (P > 0.05). The polymerase chain reaction denaturing gradient gel electrophoresis and 16S rRNA gene sequencing analysis indicated that dietary B. subtilis 2-1 at 105 and 107 CFU g?1 inhibited most of the Proteobacteria including those in genus Vibrio. Dietary B. subtilis 2-1 at 109 CFU g?1 not only decreased the abundance and species of genus Vibrio, but also increased the intensity of genera Psychrobacter and Bacillus. A specific dosage of dietary B. subtilis 2-1 could increase the growth and modulate the intestinal microbiota of sea cucumber; thus it might be a novel probiotic for keeping the health of sea cucumber.  相似文献   

18.
The Swiss stone Pine (Pinus cembra L.) is an alpine species, fairly commonly occurring in the Alps and the Carpathians, close to the timberline. Natural sites of the Swiss stone pine in Poland are found exclusively in the Tatra Mountains, within the area of the Tatra National Park (TNP). In 2017, the health status of the needles of P. cembra was determined and their mycological analysis was carried out. As a result, 11 species of fungi were isolated from the needles showing disease symptoms, manifested by various shades of discoloration. The most frequently observed species was Fusarium oxysporum. It probably does not bring on disease symptoms, but may affect the development of other frequently isolated species (such as Sydowia polyspora, Lophodermium sp. and Lophodermium conigenum) that are pathogenic to Pinus spp.  相似文献   

19.
20.
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P 0.001), and the interaction between human disturbance activities and water conditions was also significant(P 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil aquaculture pond sediment soil near the discharge outlet rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R~2 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号