首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gulf of Mannar along the Tuticorin coast is a coral base of the southeast coast of India. To obtain a preliminary view of its environmental conditions, geochemical distribution of major elements (Si, Al, Fe, Ca, Mg, Na, K, P), trace elements (Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) and acid leachable elements (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were analyzed in surface sediment samples from two seasons. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated with the detrital phase. The sediments in the gulf are sandy with abundant calcareous debris, which controls the distribution of total and acid leachable elements. Enrichment factors relative to crust vary by a magnitude of two to three and the presence of trace metals indicates the input of Cr, Pb, Cd, Cu and Zn in both forms through industrial activities. Factor analysis supports the above observation with higher loadings on acid leachable elements and its association with CaCO3. The increase in concentration of trace metals (Cr, Pb, Cd, Cu, Co, Ni, Zn) along the Gulf of Mannar indicates that the area has been contaminated by the input from riverine sources and the industries nearby. The present study indicates that other sources should be evaluated in the long-term monitoring program.  相似文献   

2.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

3.
太平洋北部铁锰结核富集区沉积物的元素地球化学特征   总被引:2,自引:1,他引:2  
鲍根德 《沉积学报》1990,8(1):44-56
本文对太平洋北部铁锰结核富集区沉积物的元素地球化学作了较为详细的研究。因子分析提供的信息表明,元素的分布主要受三个因子控制:(1)粘土及Fe、Mn氧化物水化物胶体的吸附作用;(2)生物化学作用过程有关的自生沉积作用;(3)海底页岩风化及附近海区的火山喷发作用。元素的来源:(1)Fe、Mn、Cu、Co、Ni、Zn、Cr、Cr、Mg、Al、Ti、K共生,主要来自粘土吸附;(2)C有机、N、Sr、Na及Si、Ca、Sr主要来自生物化学过程沉积;(3)Pb主要来源于岩石碎屑(火山喷发碎屑)。  相似文献   

4.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

5.
Cr, Cu, Fe, K, Mg, Mn, N, Ni, Pb, S, V and Zn concentrations were determined during a whole seasonal cycle in leaves and in water and sediment roots of the aquatic macrophyte Phragmites australis (Cav.) Trin. ex Steudel from three sites in the Lake Averno (Naples, Italy), a volcanic lake contaminated by trace elements. At the beginning of the research, elemental analysis was also performed on lake sediments, that showed different trace-element concentrations depending on the sites.  相似文献   

6.
Chilka lake, the largest coastal lagoon of Asia is one of the most dynamic ecosystems along the Indian coast. Historically the lagoon has undergone a considerable reduction in surface area due, in part, to input from natural processes but mostly due to human activities. The purpose of this investigation is to document the heavy metals' affinity for specific geochemical phases in the recently deposited sediments in the lagoon. Thirty-three samples were collected and analyzed for different geochemical phases of Fe, Mn, Cu, Cr, Ni, Pb, and Zn utilizing a sequential extraction scheme. In the nonlithogenous fraction, the exchangeable fraction was not geochemically significant, having <2% of the total metal concentration for all the elements. However, the carbonate fraction contained the following percentages of the total concentration: <1% Fe, 13% Mn, 6% Cu, 4% Cr, 8% Ni, 13% Pb, and 12% Zn, suggesting the detrital origin of the sediments. Reducible and organic matter-bound fractions were the significant phases in the nonlithogenous fraction, containing 9% Fe, 16% Mn, 15% Cu, 16% Cr, 16% Ni, 14% Pb, and 14% Zn in the former and 4% Fe, 3% Mn, 17% Cu, 3% Cr, 14% Ni, 15% Pb, and 14% Zn in the latter. The phenomenon has been attributed to the scavenging affinity of Fe-Mn oxides and affinity for sorption into organic matter of the lagoon sediments. The lithogenous, residual fraction generally considered as a guide for natural background values was determined to contain 87% Fe, 67% Mn, 61% Cu, 77% Cr, 61.3% Ni, 56% Pb, and 60% Zn of the total concentrations.  相似文献   

7.
Coastal uses and other human activities have inevitably impinged on the Gulf environment; therefore, these regions require continuous monitoring. The investigated area covered the maximum fragments of Dubai coastal region in the Arabian Gulf. The determination of major oxides and trace metal concentrations in Dubai sediments revealed three heavily and moderately contaminated regions. One is in the far northeastern part at Al-Hamriya Sts 1–3 and contaminated by Fe, Cu, Pb, and Zn; the second is in the mid-northeastern part at Dry Docks and contaminated by Cu, Ni, Pb, and Zn; and finally, the third is in the near southwestern part at Dubal and contaminated by Fe, Mg, Cr, Ni, and Zn. Al-Hamriya St 3 represented the highest values of Cu, Pb, and Zn, whereas Dubal exhibited the maximum values of Fe, Mg, Ba, Cr, Mn, Ni, and V. The anthropogenic discharge and natural deposits are the main sources of contamination. In general, all trace and major elements showed the minimal levels at Jebel Ali Sanctuary (Sts 11, 12, 13) except for Sr and Ca, which showed their maximum values. The highest concentrations of Ca and Sr are mainly attributed to carbonate gravel sands and sands, which cover most stations. Each of V and Ni showed negative correlation with TPH, which may be indicated that the source of oil contamination in the region is not related to crude oil but mostly attributable to anthropogenic sources. The significant positive correlation, which was found between trace metals and TOC indicates that organic matter plays an important role in the accumulation of trace metals in case of Cu, Zn, and Pb.  相似文献   

8.
The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behaviour. The toxicity and fate of the water borne metal is dependent on its chemical form and therefore quantification of the different forms of metal is more meaningful than the estimation of its total metal concentrations. A five-step sequential extraction procedure was applied for the determination of the distribution of seven elements (Pb, Cr, Cu, Mn, Zn, Ni, Fe) in sediment samples collected from Bakır?ay and Gediz Rivers. According to this study, the results of metals are mostly retained in the residual, oxidizable and reducible fractions. Based on the chemical distribution of metals, we found that Cr, Zn, Cu and Ni are the most non-mobile metals. Pb is the metal that showed the highest percentages in the residual and reducible fractions. Mn is present in the higher percentages in the reducible and carbonate fractions. However, Fe is present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments. The risk assessment code as applied to the present study shows that about 12.3–26.9 and 15.7–33.5% of manganese at most of the sites exist in carbonate fraction in the Bakır?ay and Gediz Rivers, respectively. Therefore, Mn comes under the medium risk category in the Bakır?ay and high-risk category in the Gediz River. Speciation pattern of Cu, Zn, Pb, Cr, Ni, Fe shows low to medium risk to aquatic environment health in both rivers.  相似文献   

9.
丁帅帅  郑刘根  程桦 《岩矿测试》2015,34(6):629-635
煤矸石是我国堆存量最大的工业固体废物,本文应用电感耦合等离子体发射光谱法、逐级化学提取法和相关性分析研究了淮北临涣矿区低硫煤矸石中10种微量元素的含量及赋存状态,并运用风险评价指数法评价其环境效应。结果表明,低硫煤矸石中Ba、Co、Cr、Mn、Ni、Pb、V含量均高于淮北煤和中国煤均值,Mn、V的富集系数大于1,有一定迁移风险。微量元素主要以残渣态和铁锰氧化物结合态存在,两者质量分数之和为68.87%~92.93%,其中Cd、Co、Cr、Cu、Ni、Pb、Zn赋存于硫化物矿物中,V赋存于黏土矿物中,Mn赋存于碳酸盐矿物和硫化物矿物中。10种微量元素对环境的危害性大小为:MnZnNiPbCdCuBaVCrCo,表明低硫煤矸石堆存过程中活性态Mn对生态环境造成危害的可能性最大,由Mn可能引起的煤矸石山周边地区土壤及水体污染应当重视。  相似文献   

10.
We analyzed 77 surface sediment samples collected in the southwestern East/Japan Sea from the Korea Strait through the Ulleung Basin and the Korea Plateau for grain size, calcium carbonate, organic carbon, and major (Na, Mg, Al, Fe, K, Ca, and Ti) and trace elements (P, Mn, Sr, Li, Sc, V, Cr, Co, Ni, Zn, Cu, and Pb).The chemical composition of the surface sediments was found to be highly variable spatially. Cluster analysis of surface sediment chemical compositions indicated five major geochemical sedimentary environments: basin, lower slope, coast and upper slope, inner shelf, and outer shelf. Continental-shelf sediments were rich in shell fragments and had relict and coarse-grained characteristics. Recent fine-grained sediments were only distributed in coastal, slope, and basin areas. Concentrations of Al, K, Ca, Ti, Cr, and Sc were highest in the coastal and upper slope areas and decreased with water depth. Elemental ratios using major and trace elements indicated that coastal and upper slope detrital sediments were mixtures of sediments derived from the Changjiang (Yangtze) and Nakdong Rivers. Although the concentrations of organic carbon, P, Mn, V, Co, Ni, Cu, and Pb increased with water depth, their distribution patterns indicated authigenic (V, Cu, and Pb) and diagenetic (Fe, P, Mn, Co, and Ni) origins. The distribution pattern with water depth suggested that the chemical composition of surface sediment was determined by sedimentologic and geochemical processes, such as the supply of detrital and biogenic materials, and authigenic and post-depositional diagenetic processes in sediments.  相似文献   

11.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

12.
利用同步辐射X射线荧光技术,对人工合成金刚石以及产自山东、辽宁、湖南的天然金刚石进行了微量元素的测试分析。结果表明,在合成金刚石中,检测到了第四周期的元素(除As、Ge、Kr和Br外)和Pb;其中Fe、Co、Ni相对含量高,可能是合成时触媒的混入引起的。天然金刚石中检测到的微量元素有Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、W、Au和Pb,但相对含量比合成金刚石中相应的微量元素相对含量低。不同产地的天然金刚石中的微量元素种类及含量存在差异,反映了金刚石地幔生长环境的不同及岩浆对金刚石生长过程的影响。  相似文献   

13.
高速公路两侧土壤的磁化率从路中央向两侧具有逐渐降低的特征,相对应的样品中的重金属Cu、Pb、Zn、N i、Cr、Fe等元素的含量也具有从路中心向两侧逐渐降低的现象。相关分析表明,土壤磁化率与土壤中的Cu、Pb、Zn、N i、Cr、Fe的相关性显著,因而可以利用磁化率异常来指示高速公路两侧土壤的重金属污染状况。元素的赋存形态分析表明铁锰氧化物态与残渣态是Cu、Pb、Zn、N i、Cr、Fe的主要赋存形式;各元素的形态分析结果与土壤磁化率的相关统计分析表明,高速公路两侧土壤的磁化率与可交换态中的Cu、Pb、Zn、铁锰氧化物态中的Fe、Pb、Zn、有机还原态中的Cu、Cr、Fe、Zn和残渣态中的Cu、Pb、Zn、Cr、Co、N i具有明显的相关性。  相似文献   

14.
To investigate trace elements in wet precipitation over the Tibetan Plateau (TP), a total of 79 event-based precipitation samples were collected from September 2007 to September 2008 at Nam Co Station. Samples were analyzed for concentrations of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb using inductively coupled plasma-mass spectrometry (ICP-MS). The annual volume-weighted concentrations of elements were generally comparable to other background sites, and much lower than urban areas. The enrichment factors (EF) showed that, in comparison with the Tibetan soils, the wet precipitation had elevated concentrations of Cr, Co, Ni, Cu, Zn, Cd and Pb, probably indicating their anthropogenic origins. Other elements (Al, Fe, Mn and V) with enrichment factor value of <10 may derive mainly from crustal sources. The principal component analysis further confirmed the two different groups of elements in wet deposition samples. The backward trajectories were calculated for each precipitation event using the NOAA HYSPLIT model. The results indicated significant differences of EF for trace elements of anthropogenic origin between the summer monsoon and non-monsoon seasons. The data obtained in the present study indicated that pollutants can affect remote high altitude regions like the Tibetan Plateau through long-range transport, especially in the summer monsoon season.  相似文献   

15.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

16.
The role of laterites and clay in the adsorption of trace elements and consequent remediation of contaminated water from toxic elements has been studied. Laterite, clay and associated water samples from industrially and biologically polluted rivers and wells from Eloor-Kalamassery are analysed for Cr, Mn, Co, Ni, Cu, Zn, Cd, Pb, Bi, As, and Hg contents. The cation exchange capacity of the clay-organic matter components from the in situ and transported laterites and clay in differing environments of pollution are responsible for the reduction and depletion of toxic elements concentrated in the polluted water medium. Adsorption of toxic elements by laterite has further been corroborated by a simulation experiment conducted in the laboratory. An artificial laterite bed was prepared and water containing known amounts of Cr, Zn, Ni and Mn were allowed to flow overnight through the bed at uniform rate. Analysis of artificial laterite bed shows enrichment of Cr, Zn, Ni, Mn, indicating the absorbent properties of laterite.  相似文献   

17.
Geochemical analyses of lakebed and core sediments from Lake Sambe on the outskirts of Oda City in Shimane prefecture in southwestern Japan were carried out in order to assess the water quality and the concentration and distribution patterns of sixteen elements. The lake water showed a stratified condition with respect to dissolved O2, and As, Fe, and Mn concentrations in the bottom layers which increased in the summer. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements (P, Ca, Sc, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Sr, Zr, Pb, and Th), and total sulfur (TS). Elevated values of As, Zn, V, Fe, P, and TS were present in several layers of the upper cores (from 0 to 5 cm) and other surface sediments. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, fine-grained organic rich sediments, and post-depositional diagenetic remobilization. Moreover, correlations between the concentrations of trace metals and iron in the sediments suggest their adsorption onto Fe (oxy)hydroxides, whereas correlations with sulfur indicate that they were precipitated as Fe-sulfides. The average abundances of As, Pb, Zn, and Cu exceeded the lowest effect level and Interim Sediment Quality Guideline values that the New York State Department of Environmental Conservation and the Canadian Council of Ministers of the Environment determined to have moderate impact on aquatic organisms. In addition, concentrations of As and Zn exceeded the Coastal Ocean Sediment Database threshold value, indicating potentially toxic levels. Therefore, the presence of trace metals in the lake sediments may result in adverse effects on biota health.  相似文献   

18.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

19.
Geochemical reconnaissance survey of Wadi Umm Khariga in the southern part of the Eastern Desert of Egypt was carried out in an area of 30 Km2. The results of 79 stream sediment samples analyzed for Co, Cr, Cu, Fe, K, Li, Mn, Ni, Pb, Rb, Ti, and Zn after hot extraction with aqua regia were treated with simple and multivariate statistical methods. Titanium, Cu, Co, Ni, and Cr show lognormal distribution, whereas the other elements are normally distributed. The correlation between Fe and Mn and most of the analyzed elements suggest coprecipitation process that could be significant in controlling the distribution of these elements. Regression analysis was effective in correcting the effects of Fe and Mn by calculating the residuals. R-mode factor analysis produced a four-factor model, which accounts for 79.1% of the total variance in the data. Factor 1 (rCr, rCo, Ni) scores are correlated spatially with the area underlain by the serpentinites, metarhyolites, and metadacites. Factor 2 (rLi, rZn, rTi, Rb, K) scores are correlated with the metarhyolites, metadacites, and metapyroclastics. Factor 3 (Cu, rTi, Pb) scores characterize the metabasalts, meta-andesites, metarhyolites, and metadacites, thus reflecting the parent rocks as dominant influencing factors. Factor 4 (Mn, Fe) scores reflect the secondary environment effects. Discriminant analysis delineated an anomalous area for Co, Ni, Cr, Cu, Ti, Mn, Pb, and Li with probable occurrence of economic mineral deposits.  相似文献   

20.
The present study was carried out in parts of Hindon-Yamuna interfluve region to evaluate the concentration of trace elements (Al, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Cd, B and Pb) in groundwater. Pre-monsoon groundwater samples were collected in 2007 from 22 locations distributed throughout the study area, and were analyzed using Inductive Coupled Plasma Mass-Spectrophotometer (ICPMS). Trace element analyses show high concentration levels for Al and Cr in almost all groundwater samples. Relatively high values are also reported for Pb, Se, Fe and Mn (as per B.I.S (1991) standard for drinking water) in few samples. These high concentrations of metal ions in groundwater were probably due to discharge of untreated effluents from Textile, dyeing and other industries. As far as Al is concerned, its source is rather enigmatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号