首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
西部测图工程以"丰富产品种类,拓展服务领域"为设计宗旨,力求地图新产品开发,在传统4D产品的基础上,根据西部地物地貌特征补充了地形图要素内容,开发研制了影像地图、晕渲地形图新产品。本文针对原有地形图在表达西部地物地貌特征方面的不足,介绍了西部测图工程中地图新产品的内容设计与制图表达,包括地形图要素扩充内容与制图表达、影像地图产品内容设计与制图表达、晕渲地形图产品内容设计与制图表达等技术内容。地图新产品设计与表达技术已应用在西部测图中,指导生产了我国西部首批1:50000地形图、影像地图和晕渲地形图产品,丰富了我国基本比例尺地形图产品种类。  相似文献   

2.
谢宏全  陈岳涛  赵芳  田董炜  卢霞 《测绘通报》2019,(2):141-143,156
将背负式移动激光扫描系统应用在测绘大比例尺地形图中,其扫描精度至关重要。本文利用徕卡Pegasus Backpack对苏州工业园园区测绘地理信息大楼进行扫描,采用Inertial Explorer、Infinity、AoTumatic Processing对点云数据进行预处理,运用RealWorks提取特征点,将特征点在MicroStation V8联图中绘制成1:500地形图。通过与传统方法绘制的1:500地形图相叠合,发现两幅地形图具有很好重合度。对地物检测点精度分析后,得到点位中误差为0.026 m,高程中误差为0.041 m。研究结果表明徕卡Pegasus Backpack满足1:500地形图测量精度要求。  相似文献   

3.
测绘生产和教学中,时常出现测站、定向点坐标设置与实际位置不一致,出现地形图测绘错误。通过错误分析,应用平面坐标变换原理,基于AutoCAD图形平台进行直观、可视化的计算机处理,给出EXCEL处理代码和lisp程序,进行错误的批量处理。该方法将在应急工程控制测量后置的地形图测绘工作中得到广泛应用。  相似文献   

4.
传统的地形图测绘通常采用扫描矢量化纸质地图、野外数字化实测、航空摄影数字化等方法获取制图数据,地形图精度可靠,但作业速度和效率不高,费时费力,作业周期较长。本文研究了利用Google Earth图像制作调查用工作底图的方法和步骤,并将制作的工作底图与实地测量结果进行了对比分析,最终得出了利用Google Earth制作的工作底图在精度上能够满足农村集体土地确权登记发证调查工作需要的结论,并对其存在的图像纠正、与实测界址点之间的误差等问题进行了分析说明。  相似文献   

5.
目前,对于城市1∶500数字化地形图数据的获取与更新中,全野外数字测图仍是主要的测绘方式。如何利用新的测量手段提高生产效率和降低劳动强度,是值得关注的问题。文中阐述无人机和地面三维激光扫描仪新技术在城市基本地形图测绘中的应用,利用无人机航测生产的1∶500正射影像图成果,辅助进行全野外测图;利用地面三维激光扫描仪,将快速获取的三维点云数据加以处理,用于测绘成果质量检查。通过这些新技术,对提高1∶500城市基本地形图的生产效率进行有益的尝试,对同类工程具有借鉴意义。  相似文献   

6.
通过对当前大比例尺地形图更新存在问题的分析,对测绘大数据时代的大比例尺地形图在数据采集手段、加强历史数据的挖掘和利用、建立地图综合缩编系统、开展城市地下空间测绘等4个方面进行了探讨,总结了测绘大数据时代的大比例尺地形图更新机制和技术方法。  相似文献   

7.
A reference digital elevation model (DEM), produced from contour lines digitization, from topographic maps at scale 1:250.000 is used in order to assess the vertical accuracy of the SRTM DTED level 1 in Crete Island in Southern Greece. The error image interpretation revealed three types of systematic errors: (a) stripping, (b) large voids and (c) those errors resulted from the mis-registration of the Shuttle Radar Topography Mission (SRTM) imagery to the local datum. Terrain was segmented to plane regions and sloping regions. Sloping regions were segmented to aspect regions (aspect being standardized to the eight geographic directions defined in a raster/grid image). Error statistics was computed for the study area as well as the individual terrain classes. Vertical accuracy was found to be terrain class dependent. Sloping regions present greater mean error than the plane ones. Statistical tests verified that the difference in mean error between aspect regions that slope in opposite geographic directions is statistically significant. The greater mean error is observed for SW, W and NW aspect regions. The additional finishing steps applied to the SRTM dataset were not sufficient enough for the systematic errors and the terrain class dependency of the error to be corrected. The observed root-mean-square error (RMSE) for the SRTM DTED-1 of Crete do not fulfil the 16 m RMSE specification for the SRTM mission while the USA national map accuracy standards for the scale 1:250.000 are satisfied.  相似文献   

8.
Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90–95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86–89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.  相似文献   

9.
Abstract

The Palestine Exploration Fund (PEF) maps (1871–1877) are highly praised for their accuracy and completeness; however, no systematic analysis of their accuracy has been done to date. To study the potential of these 1:63,360 maps for a quantitative analysis of land cover changes over a period of time, I have compared them to 20th century topographic maps. The map registration error of the PEF maps was 74.4 m using 123 control points of trigonometrical stations and a 1st order polynomial. The median RMSE of all control and test points (n = 1104) was 153.6 m. As a case study of land cover changes, the area of coastal dunes as shown on the PEF maps was compared with that shown on British Mandate 1:20,000 topo-cadastral maps from c. 1930. In five of the six areas analysed, the yearly dunes movement rate was above the estimated annual error due to data resolution (2.96 m/year). The rate of dune movement south of Acre was found to be between 3.9 and 6.3 m/year (depending on the method used for map registration) between 1874 and 1930. Care should be taken when analysing historical maps, as it cannot be assumed that their accuracy is consistent at different parts or for different features depicted on them.  相似文献   

10.
Many municipal activities require updated large-scale maps that include both topographic and thematic information. For this purpose, the efficient use of very high spatial resolution (VHR) satellite imagery suggests the development of approaches that enable a timely discrimination, counting and delineation of urban elements according to legal technical specifications and quality standards. Therefore, the nature of this data source and expanding range of applications calls for objective methods and quantitative metrics to assess the quality of the extracted information which go beyond traditional thematic accuracy alone. The present work concerns the development and testing of a new approach for using technical mapping standards in the quality assessment of buildings automatically extracted from VHR satellite imagery. Feature extraction software was employed to map buildings present in a pansharpened QuickBird image of Lisbon. Quality assessment was exhaustive and involved comparisons of extracted features against a reference data set, introducing cartographic constraints from scales 1:1000, 1:5000, and 1:10,000. The spatial data quality elements subject to evaluation were: thematic (attribute) accuracy, completeness, and geometric quality assessed based on planimetric deviation from the reference map. Tests were developed and metrics analyzed considering thresholds and standards for the large mapping scales most frequently used by municipalities. Results show that values for completeness varied with mapping scales and were only slightly superior for scale 1:10,000. Concerning the geometric quality, a large percentage of extracted features met the strict topographic standards of planimetric deviation for scale 1:10,000, while no buildings were compliant with the specification for scale 1:1000.  相似文献   

11.
A three level classification system, based on the genesis of landforms, was used to map the geomorphology of the Goa state. The first level corresponds to the process that was responsible for landform generation, the second level or the intermediate level was assigned based on the morphography, and the third level corresponds to the individual landforms units identified based on the morphostructure. The mapping was carried out using IRS-P6 LISS-III (23.5 m) satellite image as the primary data source. Ancillary data such as geological map, topographic map, digital elevation model (DEM), field data collected by global positioning system (GPS) and web portals for image visualisation, were also used for the mapping purpose. A new software designed for mapping landforms based on the genesis, was used in this study to create a seamless geomorphology and lineament database of the Goa state in a GIS environment. A total of 58 landforms within six types of genetic classes were mapped in this area. Similarly, structural and geomorphic lineaments were also delineated using the satellite data. The database created has multi-purpose usability such as environmental studies, mining activity assessment, coastal zone management and wasteland development, since the classification system used is focused on processes, not theme specific.  相似文献   

12.
The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student’s-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.  相似文献   

13.
In the present study, forest type classification using Landsat TM False Colour Composite (FCC) bands 2, 3, 4 has been evaluated for mapping highly heterogeneous forest environment of Western Ghats (Kerala). Visual interpretation of Landsat TM FCC has been carried out to identify bioclimatic vegetation types. For accuracy estimation maps prepared from 1∶15,000 scale black-and-white aerial photographs have been used as ground check data. For comparison aerial photomap classes have been aggregated to match with Landsat-TM-derived map. The classification accuracy of ten major bioclimatic and landcover types was estimated using systematic sampling procedure. The overall classification accuracy of the forest types for the study area was 88.33%.  相似文献   

14.
月球地形制图是了解月球形貌构造,开展月球工程探测及科学研究的基础性工作。自从发射嫦娥一号月球探测卫星以来,中国正式步入月球与行星制图研究的行列。首先,回顾了国内外月球探测与地形制图的基本情况;然后,结合中国嫦娥工程中在月球地形制图领域的研究工作,从月球地形制图标准体系建设、月球地形制图产品研制、月球地形制图理论及技术研究3个方面介绍了中国在月球地形制图领域开展的研究进展和取得的初步成果;最后,总结了当前月球地形制图研究领域中存在的关键理论和技术难题,并探讨了下一步亟需开展的研究工作,可为中国未来的月球地形制图研究提供借鉴。  相似文献   

15.
免像控无人机航摄系统在大比例尺地形图测量中的应用   总被引:1,自引:0,他引:1  
本文以拓普康天狼星Sirius Pro免像控无人机航摄系统为载体,从测区航线设计、影像数据采集、产品输出等技术,结合实例对该系统在大比例尺地形图中测量精度和应用进行了分析研究。该系统突破了传统低空摄影测量模式,无需外业空三测量,内业数据可一键式自动化处理,它的应用缩短了作业生产周期,降低了生产成本,同时也证明该系统能够满足大比例尺地形图测绘精度要求。  相似文献   

16.
李通 《北京测绘》2020,(4):543-546
目前,城市大比例尺地形图更新主要采用全野外的测量方法,不仅耗费大量的劳动力,并且效率低下。旋翼机和倾斜摄影测量技术的快速发展,为城市大比例尺地形图的测绘与更新提供了全新的技术手段。本文以滕州市城区约10 km2的1∶500地形图测绘项目为例,采用大疆精灵4 Pro旋翼机进行数据获取,Smart 3D软件进行空三加密及三维建模,最后在EPS软件中进行三维测图,并对地形图成果进行了精度检核,验证了技术方案的可行性,为同类项目提供了有益参考。  相似文献   

17.
王炜杰  李莉 《北京测绘》2020,(4):537-542
随着倾斜摄影技术的不断发展,其成果实景三维模型的工程化应用一直以来都是研究热点。本文基于倾斜实景三维模型进行1∶500大比例尺地形图生产,总结了地形图生产的技术流程,提出了内业采集过程中针对点、线、面要素的采集方法,并结合生产案例及精度分析结果,验证了基于倾斜三维模型进行大比例尺测图的可行性,最后分析了地形图的主要误差源以及利用倾斜三维模型进行大比例尺测图存在的问题和建议。  相似文献   

18.
介绍了地面三维激光扫描仪工作原理,采用自检校法对仪器系统误差进行标定并详细推导了自检校系统误差模型。利用徕卡HDS3000获取的数据进行分析计算,得到该仪器的系统误差值,同时对获取的数据进行改正,并通过检验点验证系统误差改正效果。实验表明,经过系统误差改正后,HDS3000扫描仪的测量准确度可以提高一倍,效果良好。  相似文献   

19.
The reliability of habitat maps that have been generated using Geographic Information Systems (GIS) and image processing of remotely sensed data can be overestimated. Habitat suitability and spatially explicit population viability models are often based on these products without explicit knowledge of the effects of these mapping errors on model results. While research has considered errors in population modeling assumptions, there is no standardized method for measuring the effects of inaccuracies resulting from errors in landscape classification. Using landscape‐scale maps of existing vegetation developed for the USDA Forest Service in southern California from Landsat Thematic Mapper satellite data and GIS modeling, we performed a sensitivity analysis to estimate how mapping errors in vegetation type, forest canopy cover, and tree crown size might affect delineation of suitable habitat for the California spotted owl (Strix occidentalis occidentalis). The resulting simulated uncertainty maps showed an increase in the estimated area of suitable habitat types. Further analysis measuring the fragmentation of the additional patches showed that they were too small to be useful as habitat areas.  相似文献   

20.
The purpose of this paper is to identify error properties arising when source maps that individually contain error are added or when the ratio of one map with respect to another is computed. The research approach to the problem combines mathematical analysis and simulation where source maps and error processes have been constructed with specified properties. Geman and Geman's corruption model is used to represent error in individual source maps. The paper reports spatial and aspatial error properties arising from adding and ratioing error-corrupted maps. These are identified as functions of the true characteristics of the individual source maps and the errors inherent within them; the relative contribution of these two components to the errors in maps is quantified by regression (for addition) and ANOVA (for ratioing). The paper considers the broader usefulness of this type of experimental analysis in using artificially constructed maps in geographic information science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号