首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In 2015, it was adopted the 2030 Agenda for Sustainable Development to end poverty, protect the planet and ensure that all people enjoy peace and prosperity. The year after, 17 Sustainable Development Goals (SDGs) officially came into force. In 2015, GEO (Group on Earth Observation) declared to support the implementation of SDGs. The GEO Global Earth Observation System of Systems (GEOSS) required a change of paradigm, moving from a data-centric approach to a more knowledge-driven one. To this end, the GEO System-of-Systems (SoS) framework may refer to the well-known Data-Information-Knowledge-Wisdom (DIKW) paradigm. In the context of an Earth Observation (EO) SoS, a set of main elements are recognized as connecting links for generating knowledge from EO and non-EO data – e.g. social and economic datasets. These elements are: Essential Variables (EVs), Indicators and Indexes, Goals and Targets. Their generation and use requires the development of a SoS KB whose management process has evolved the GEOSS Software Ecosystem into a GEOSS Social Ecosystem. This includes: collect, formalize, publish, access, use, and update knowledge. ConnectinGEO project analysed the knowledge necessary to recognize, formalize, access, and use EVs. The analysis recognized GEOSS gaps providing recommendations on supporting global decision-making within and across different domains.  相似文献   

2.
进一步认识地球、关注地球发展规律, 保护人类共同家园已成为世界各国政府的共识。共同发展地球观测技术, 提高对地观测能力成为新世纪世界各国的共同要求。2003年发起, 2005年由欧盟组织的地球观测部长级峰会上通过了全球综合地球观测系统(Global Earth Observation System of Systems, GEOSS)十年执行计划, 构成了世界范围内地球观测领域国际科技合作的主流。中国地球观测领域呈现出快速发展的趋势, 并提出了该领域的全球性发展战略, 预示着中国将在国际地球观测领域发挥越来越重要的作用。文章介绍了中国地球观测领域发展现状和趋势, 在分析中国参与全球地球观测领域国际合作现状及目前存在问题的基础上, 提出进一步促进中国参与该领域国际合作, 为中国乃至国际社会发展做出重要贡献的建议。  相似文献   

3.
The discovery of and access to capacity building resources are often essential to conduct environmental projects based on Earth Observation (EO) resources, whether they are Earth Observation products, methodological tools, techniques, organizations that impart training in these techniques or even projects that have shown practical achievements. Recognizing this opportunity and need, the European Commission through two FP7 projects jointly with the Group on Earth Observations (GEO) teamed up with the Committee on Earth observation Satellites (CEOS). The Global Earth Observation CApacity Building (GEOCAB) portal aims at compiling all current capacity building efforts on the use of EO data for societal benefits into an easily updateable and user-friendly portal. GEOCAB offers a faceted search to improve user discovery experience with a fully interactive world map with all inventoried projects and activities. This paper focuses on the conceptual framework used to implement the underlying platform. An ISO19115 metadata model associated with a terminological repository are the core elements that provide a semantic search application and an interoperable discovery service. The organization and the contribution of different user communities to ensure the management and the update of the content of GEOCAB are addressed.  相似文献   

4.
生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和。由于气候变化、人类活动的加剧,生物多样性正在经受前所未有的快速变化,各国政府和相关国际组织已经积极投入到生物多样性监测和保护中。为了解生物多样性的现状和变化规律,全球性、区域性及国家性生物多样性监测网络陆续建立。地球观测组织—生物多样性监测网络(GEO BON)作为全球性网络,目的是建立和完善生物多样性监测核心指标EBV(Essential Biodiversity Variables),推动监测指标的标准化和全球化,为数据共享和大尺度生物多样性变化评估奠定基础。在区域尺度上,欧盟成立了EU BON,亚太地区成立了AP-BON。在国家尺度上,瑞士、英国、日本等均建立了监测网络。中国科学院在"十二五"期间成立了中国生物多样性监测与研究网络(Sino BON),对中国生物多样性的变化开展长期的监测与研究。生物多样性监测依赖于传统调查方法与先进技术结合,如红外相机、基因技术、无人机技术等。遥感能够提供大范围、全覆盖的生物多样性信息,是未来大尺度生物多样性监测的重要手段之一。为此,GEO BON成立了"生态系统结构"组主要研究如何建立基于遥感数据的EBV。Sino BON也引入了无人机近地面遥感技术探讨更大区域的生物多样性监测。未来随着中国综合地球观测系统的完善,Sino BON的地面观测将更好地与卫星数据结合,实现生物多样性天地一体化监测,服务于中国生物多样性保护与评估。  相似文献   

5.
For ages, links between environment, climate and their impacts on human health have been observed and studied. Research to improve our understanding of environmental key determinants of infectious diseases can provide innovative information for adaptation strategies and lead to new tools optimizing surveillance, vector control measures, and disease prevention. As earth observation satellites can measure meteorological and environmental parameters, NASA and CNES have separately engaged in an innovative use of their earth observation infrastructure development programs: space tools addressing public health. As NASA and CNES have fruitful cooperation for satellite development missions for years, both health programs have proposed to explore a new area of collaboration: satellites addressing health issues. As members of international organizations, NASA and CNES could promote their common views towards the Group on Earth Observations (GEO) Community of Practice for Health & Environment and the Committee on Earth Observation Satellites (CEOS) Societal Benefit Area on Health.  相似文献   

6.
Land degradation is a critical issue globally requiring immediate actions for protecting biodiversity and associated services provided by ecosystems that are supporting human quality of life. The latest Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Landmark Assessment Report highlighted that human activities are considerably degrading land and threating the well-being of approximately 3.2 billion people.In order to reduce and ideally reverse this prevailing situation, national capacities should be strengthened to enable effective assessments and mapping of their degraded lands as recommended by the United Nations Sustainable Development Goals (SDGs). The indicator 15.3.1 (“proportion of land that is degraded over total land area”) requires regular data production by countries to inform and assess it through space and time. Earth Observations (EO) can play an important role both for generating the indicator in countries where it is missing, as well complementing or enhancing national official data sources.In response to this issue, this paper presents an innovative, scalable and flexible approach to monitor land degradation at various scales (e.g., national, regional, global) using various components of the Global Earth Observation System of Systems (GEOSS) platform to leverage EO resources for informing SDG 15.3.1. The proposed approach follows the Data-Information-Knowledge pattern using the Trends.Earth model (http://trends.earth) and various data sources to generate the indicator. It also implements additional components for model execution and orchestration, knowledge management, and visualization.The proposed approach has been successfully applied at global, regional and national scales and advances the vision of (1) establishing data analytics platforms that can potentially support countries to discover, access and use the necessary datasets to assess land degradation; and (2) developing new capacities to effectively and efficiently use EO-based resources.  相似文献   

7.
To tackle Big Data challenges such as Volume, Variety, and Velocity, the Earth Observations Data Cube (EODC) concept has emerged as a solution for lowering barriers and offering new possibilities to harness the information power of satellite EO data. However, installing, configuring, and managing an EODC instance is still difficult requiring specific knowledge and capabilities. Consequently, facilitating and automating the generation and provision of EODC given specific user’s requirements can be beneficial.In response to this issue, this paper presents the Data Cube on Demand (DCoD) approach, a proof-of-concept that aims at facilitating the generation and use of an EODC instance virtually anywhere in the World. Users are only required to specify an area of interest; select the types of sensors between Landsat 5-7-8 and Sentinel-2; choose a desired temporal frame; and provide their email address to receive notifications. Then automatically an empty ODC instance is instantiated and desired data are ingested.The proposed approach has been successfully tested in two sites in Bolivia and DRC in the field of environmental monitoring. It has lowered many complexity barriers of such a new technology; greatly facilitated the generation and use of the Data Cube technology; enhanced data sovereignty; and ultimately can help reaching large adoption and acceptance.  相似文献   

8.
ABSTRACT

Big Earth Data has experienced a considerable increase in volume in recent years due to improved sensing technologies and improvement of numerical-weather prediction models. The traditional geospatial data analysis workflow hinders the use of large volumes of geospatial data due to limited disc space and computing capacity. Geospatial web service technologies bring new opportunities to access large volumes of Big Earth Data via the Internet and to process them at server-side. Four practical examples are presented from the marine, climate, planetary and earth observation science communities to show how the standard interface Web Coverage Service and its processing extension can be integrated into the traditional geospatial data workflow. Web service technologies offer a time- and cost-effective way to access multi-dimensional data in a user-tailored format and allow for rapid application development or time-series extraction. Data transport is minimised and enhanced processing capabilities are offered. More research is required to investigate web service implementations in an operational mode and large data centres have to become more progressive towards the adoption of geo-data standard interfaces. At the same time, data users have to become aware of the advantages of web services and be trained how to benefit from them most.  相似文献   

9.
ABSTRACT

Measuring the achievement of a sustainable development requires the integration of various data sets and disciplines describing bio-physical and socio-economic conditions. These data allow characterizing any location on Earth, assessing the status of the environment at various scales (e.g. national, regional, global), understanding interactions between different systems (e.g. atmosphere, hydrosphere, biosphere, geosphere), and modeling future changes. The Group on Earth Observations (GEO) was established in 2005 in response to the need for coordinated, comprehensive, and sustained observations related to the state of the Earth. GEO’s global engagement priorities include supporting the UN 2030 Agenda for Sustainable Development, the Paris Agreement on Climate, and the Sendai Framework for Disaster Risk Reduction. A proposition is made for generalizing and integrating the concept of EVs across the Societal Benefit Areas of GEO and across the border between Socio-Economic and Earth systems EVs. The contributions of the European Union projects ConnectinGEO and GEOEssential in the evaluation of existing EV classes are introduced. Finally, the main aim of the 10 papers of the special issue is shortly presented and mapped according to the proposed typology of SBA-related EV classes.  相似文献   

10.
Abstract

Global Earth Observing System of Systems (GEOSS) presents a great challenge of System of Systems integration across organisational and political boundaries. One existing paradigm that can address the scale of the challenge is that of the Sensor Web. In this paradigm, the internet is evolving into an active, macro sensing instrument, capable of drawing sensory data from around the globe to the fingertips of individuals. The Sensor Web will support scientific research and facilitate transparent political decision making. This article presents some of the technologies explored and activities engaged in by the GEOSS Sensor Web community, towards achieving GEOSS goals.  相似文献   

11.
Abstract

The vision of a Digital Earth calls for more dynamic information systems, new sources of information, and stronger capabilities for their integration. Sensor networks have been identified as a major information source for the Digital Earth, while Semantic Web technologies have been proposed to facilitate integration. So far, sensor data are stored and published using the Observations & Measurements standard of the Open Geospatial Consortium (OGC) as data model. With the advent of Volunteered Geographic Information and the Semantic Sensor Web, work on an ontological model gained importance within Sensor Web Enablement (SWE). In contrast to data models, an ontological approach abstracts from implementation details by focusing on modeling the physical world from the perspective of a particular domain. Ontologies restrict the interpretation of vocabularies toward their intended meaning. The ongoing paradigm shift to Linked Sensor Data complements this attempt. Two questions have to be addressed: (1) how to refer to changing and frequently updated data sets using Uniform Resource Identifiers, and (2) how to establish meaningful links between those data sets, that is, observations, sensors, features of interest, and observed properties? In this paper, we present a Linked Data model and a RESTful proxy for OGC's Sensor Observation Service to improve integration and inter-linkage of observation data for the Digital Earth.  相似文献   

12.
The effort and cost required to convert satellite Earth Observation (EO) data into meaningful geophysical variables has prevented the systematic analysis of all available observations. To overcome these problems, we utilise an integrated High Performance Computing and Data environment to rapidly process, restructure and analyse the Australian Landsat data archive. In this approach, the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations – the EO Data Cube. This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement. We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous, 25?m resolution observations. Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.  相似文献   

13.
刘一良  张景  王丝丝  苗晨  李晗  宋婉娟  张松梅 《遥感学报》2022,26(10):2106-2120
持续开展生态环境遥感监测对于认识和评估全球生态系统可持续性和人类生存环境状况具有重要的科学意义,是面向“推进生态文明建设”和“构建地球生命共同体”等目标和愿景,提升综合地球观测能力和应对全球生态环境挑战的务实行动。为此,中华人民共和国科学技术部国家遥感中心聚焦可持续发展、气候变化、防灾减灾和韧性城市等优先事项,通过政府部门、科研机构、国际组织和社会公众的协同,连续十年(2012年—2021年)发布和共享了“全球生态环境遥感监测年度报告”共29个专题报告和100余个遥感数据集。此项工作取得的成果包括:在遥感技术方法创新方面,基于国产高分辨率卫星和多源遥感影像,针对生态系统状况和人类活动痕迹的高精度遥感监测取得了一批具有自主知识产权的算法模型和数据产品;在人类生存环境认知方面,显著提升了公众对粮食安全、气候变化、城市扩展、土地退化和自然灾害风险等全球生态环境热点问题的科学认知;在生态环境重点区域方面,对“一带一路”、南极、非洲、东盟等典型区域开展精细化监测和评估。该项工作是中国作为地球观测组织GEO(Group on Earth Observations)联合主席国对国际社会的实质贡献,为相关机构和部门决策制定提供了重要的信息参考。本论文在此项工作开展十周年之际,系统阐述和总结了全球生态环境遥感监测年度报告的主要内容和亮点成果,并对未来发展提出展望。  相似文献   

14.
15.
ABSTRACT

Geo-information on settlements from Earth Observation offers a base for objective and scalable monitoring of the evolution of cities and settlements, including their location, extent and other attributes. In this work, we deploy the best available global knowledge on the presence of human settlements and built-up structures derived from Earth Observation to advance the understanding of the human presence on Earth. We start from a concept of Generalised Settlement Area to identify the Earth surface within which any built-up structure is present. We further characterise the resulted map by using an agreement map among the state of the art of remote sensing products mapping built-up areas or other strictly related semantic abstractions as urban areas or artificial surfaces. The agreement map is formed by a grid of 1?km2, where each cell is classified according to the number of EO-derived products reporting any positive occurrence of the abstractions related to the presence of built-up structures. The paper describes the characteristics of the Generalised Settlement Area, the differences in the agreement map across geographic regions of the world, and outlines the implications for potential users of the EO-derived products used in this study.  相似文献   

16.
Abstract

Recent developments in space technology and exponential increase in demand of earth observation data from space have generated a requirement of a data processing environment, where users can discover the data and process, based on their requirements. Grid Services for Earth Observation Image Data Processing (GEOID) is proposed with a motivation to cater to future earth observation applications requirements of digital earth. This paper discusses the overview of the GEOID architecture, its deployment scenario, use-cases and simulation results. Core technologies used for implementation include Grid computing and Service Oriented Architecture. GEOID provides capability to address requirements of applications such as real-time monitoring, time series data processing and processing with user required quality to meet the requirements of end user applications. GEOID allows users to access the archive products or the raw satellite data stream and process their area of interest. Simulations show that applications such as time series analysis show considerable improvement in processing time by using GEOID.  相似文献   

17.
In this paper, we present the service-oriented infrastructure within the Wide Area Grid project that was carried out within the Working Group on Information Systems and Services of the Committee on Earth Observation Satellites. The developed infrastructure integrates services and computational resources of several regional and national Grid systems: Ukrainian Academician Grid (with satellite data processing Grid segment, UASpaceGrid) and Grid system at the Center on Earth Observation and Digital Earth of Chinese Academy of Sciences. The study focuses on integrating geo-information services on flood mapping provided by Ukrainian and Chinese entities to benefit from information acquired from multiple sources. We also describe services for workflow automation and management in Grid environment and provide an example of workflow automation for generating flood maps from optical and synthetic-aperture radar satellite imagery. We also discuss issues of enabling trust for the infrastructure using certificates and reputation-based model. Applications of utilizing the developed infrastructure for operational flood mapping in Ukraine and China are given as well.  相似文献   

18.
In order to secure the necessary image acquisitions for global agricultural monitoring applications, we must first articulate Earth observation (EO) requirements for diverse agricultural landscapes and cropping systems. Crucial to this task is the identification of agricultural growing season timing at a meaningful spatial scale, so as to better define the necessary periods of image acquisition. To this end, 10 years of MODIS Terra Surface Reflectance imagery have been used to determine phenological transition dates including start of season, peak period, and end of season at 0.5° globally. This is the first set of global, satellite-derived, cropland-specific calendar dates for major field crops within a 0.5°, herein called agricultural growing season calendars Preliminary comparison against ground-based crop-specific calendars is performed, highlighting the utility of this approach for articulating growing season timing and its interannual and within-region variability. This research provides critical inputs for defining the EO requirements for the Global Agricultural Monitoring initiative (GEOGLAM), an effort by the Group on Earth Observations (GEO) to synergize existing national and regional observation systems for improved agricultural production and food security monitoring.  相似文献   

19.
由于网络地图服务(Web map service,WMS)元数据缺乏显式的领域主题描述机制,用户很难准确、全面地发现目标领域的地图数据资源。提出了一种面向地理信息资源检索的WMS领域主题文本提取及元数据扩展方法。首先,设计了一种非监督文本分类算法,利用地球与环境术语集语义网(semantic Web of Earth and environmental terminology,SWEET)和大型英语词汇语义网WordNet,综合计算WMS元数据能力文档中地学术语、通识型词汇与领域主题的语义相关度,为WMS及其图层提取多标签主题。然后,基于ISO19115 2003地理信息元数据标准,为WMS元数据组织模型扩展领域主题。实验结果表明,所提出的WMS元数据主题分类算法取得了较高的查准率和查全率,且相较于朴素贝叶斯、线性支持向量机(support vector machine,SVM)和逻辑回归等方法,整体上有较大的优势。该方法有望应用于当前的地理信息门户和目录服务,辅助用户快速、准确地定位目标领域的地图服务资源。  相似文献   

20.
We describe a remote sensing and geographic information system (GIS)-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature (LST) using NASA satellite observations, Environmental Protection Agency (EPA) ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号