首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The impact of mesozooplankton (>210 μm, mostly adult copepods and late-stage copepodites) and micrometazoa (64–210 μm, mostly copepod nauplii) on phytoplankton size structure and biomass in the lower Hudson River estuary was investigated using various14C-labeled algal species as tracers of grazing on natural phytoplankton. During spring and summer, zooplankton grazing pressure, defined as %=mg C ingested m?2 h?1/mg C produced m?2 h?1 (depth-integrated rates)×100, on total phytoplankton ranged between 0.04% and 1.9% for mesozooplankton and 0.1% and 6.6% for micrometazoa. The greatest grazing impact was measured in fall when 20.2% and 44.6%, respectively, of the total depth-integrated primary production from surface water phytoplankton was grazed. Mesozooplankton exhibited some size-selective grazing on phytoplankton, preferentially grazing the diatomThalassiosira pseudonana over the larger diatomDitylum brightwelli, but this was not found for micrometazoa. Neither zooplankton group grazed on the dinoflagellateAmphidinium sp. We conclude that metazoan zooplankton have a minimal role in controlling total phytoplankton biomass in the lower Hudson River estuary. Differences in the growth coefficients of various phytoplankton size-fractions—not grazing selectivity—may be the predominant factor explaining community size-structure.  相似文献   

2.
In order to examine the variations in concentrations of dimethylsulfide (DMS) and its fluxes to the atmosphere, 25 major and medium estuaries from Indian subcontinent were sampled during wet and dry periods. River discharge brought substantial amount of nutrients and suspended particulate matter (SPM) to the Indian estuaries; however, the concentration of phytoplankton biomass was severely limited by latter due to shallowing of photic depth. Bacillariophyceae was the dominant phytoplankton group in the Indian estuaries followed by green algae, Cyanophyceae, and Dinophyceae. Relatively higher concentrations of DMS were observed in the estuaries located along the east (3.6 ± 5.7 nM) than the west coast of India (0.8 ± 0.3 nM) during wet period whereas no significant differences were observed during dry period. The concentrations of DMS were significantly lower during wet than dry period and it was consistent with the phytoplankton biomass. The slope of the relation between DMS and phytoplankton biomass displayed a significant spatial variation due to contribution of different groups of phytoplankton in the Indian estuaries. The concentrations of DMS in the Indian estuaries were higher than other estuaries in the world except some Chinese estuaries. The annual mean flux (1.95 ± 2.5 μmol m?2 day?1) from the Indian estuaries is lower than that of other estuaries in the world, except Pearl River estuary due to inhibition of phytoplankton growth by suspended load and low flushing rates.  相似文献   

3.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

4.
This work focuses on the direct measurement of the vertical flux of appendicularian houses in order to assess their importance as a component of vertical carbon flux in coastal areas. For this purpose, arrays of cylindrical sediment traps were deployed for 5 to 8 days at two depths in a coastal area of the northern Aegean Sea (inner Thermaikos Gulf) during spring. The data support the contention that resuspension was minimal. Fecal pellet (FP) production and grazing experiments with the dominant copepods (Acartia clausi) were conducted to provide additional information on the potential FP contribution to the total carbon flux. The magnitude of the vertical flux of particulate organic carbon (POC) ranged between 310 and 724 mg C m?2 day?1. The proportion of phytoplankton carbon in the POC vertical flux was up to 45 %. The contribution of zooplankton FPs to the total carbon never exceeded 5 %. On the contrary, appendicularian houses were an essential component of the biogenic carbon flux contributing up to 55.3 % of the total vertical carbon flux. Consequently, both phytoplankton and appendicularian houses contributed equally to the biogenic carbon flux exceeding 80 % of the total sinking POC. Taking into account the sinking speed of the particles and the environment in the area, all this carbon probably reaches the seafloor, thus indicating a strong pelagic–benthic coupling.  相似文献   

5.
The Mattaponi River is part of the York River estuary in Chesapeake Bay. Our objective was to identify the organic matter (OM) sources fueling the lower food web in the tidal freshwater and oligohaline portions of the Mattaponi using the stable isotopes of carbon (C) and nitrogen (N). Over 3 years (2002–2004), we measured zooplankton densities and C and N stable isotope ratios during the spring zooplankton bloom. The river was characterized by a May–June zooplankton bloom numerically dominated by the calanoid copepod Eurytemora affinis and cladocera Bosmina freyi. Cluster analysis of the stable isotope data identified four distinct signatures within the lower food web: freshwater riverine, brackish water, benthic, and terrestrial. The stable isotope signatures of pelagic zooplankton, including E. affinis and B. freyi, were consistent with reliance on a mix of autochthonous and allochthonous OM, including OM derived from vascular plants and humic-rich sediments, whereas macroinvertebrates consistently utilized allochthonous OM. Based on a dual-isotope mixing model, reliance on autochthonous OM by pelagic zooplankton ranged from 20% to 95% of production, declining exponentially with increasing river discharge. The results imply that discharge plays an important role in regulating the energy sources utilized by pelagic zooplankton in the upper estuary. We hypothesize that this is so because during high discharge, particulate organic C loading to the upper estuary increased and phytoplankton biomass decreased, thereby decreasing phytoplankton availability to the food web.  相似文献   

6.
The Kaluganga River Estuary is one of the main sources of construction sand in Sri Lanka. Salt water intrusion along this estuary due to extensive sand mining has increased over the years. Thus, the focus of the current research is to understand the relationship between river sand mining, salt water intrusion, and the resultant effects on construction sand. Two surveys were conducted along the Kaluganga Estuary along an 11 km stretch from the river mouth at predetermined intervals to measure depth water quality profiles, and to collect sediment samples. These surveys were carried out during maximum spring tide; first in a dry period and then in a wet period, to understand hydrographic effects on the quality of river sands. Sand samples were analysed for absolute chloride content and grain size distribution. Results showed significant salt water intrusion during the dry period, averaging 2,307 μS cm?1 in surface waters throughout the surveyed 11 km stretch along with 3,818 μS cm?1 (average) in bottom waters up to 5.6 km upstream from the river mouth causing above normal chloride content in the bottom sandy sediments. The high chloride content in bottom sands was recorded up to 5.5 km from the river mouth making them unsuitable for construction purposes. However, during wet period, salt water intrusion levels in the bottom waters were insignificant (average 61 μS cm?1) and the chloride content in bottom sediments was very low. This study highlighted the requirement for regulations on river estuary sandmining for construction purposes.  相似文献   

7.
We investigated spatial and temporal changes in spectral irradiance, phytoplankton community composition, and primary productivity in North Inlet Estuary, South Carolina, USA. High concentrations of colored dissolved organic matter (CDOM) were responsible for up to 84 % of the attenuation of photosynthetically available radiation (PAR). Green-yellow wavelengths were the predominant colors of light available at the two sampling sites: Clam Bank Creek and Oyster Landing. Vertical attenuation coefficients of PAR were 0.7–2.1 m?1 with corresponding euphotic zone depths of 1.5–6.7 m. Phytoplankton biomass (as chlorophyll a [chl a]) varied seasonally with a summer maximum of 16 μg chl a l?1 and a winter minimum of 1.4 μg chl a l?1. The phytoplankton community consisted mainly of diatoms, prasinophytes, cryptophytes and haptophytes, with diatoms and prasinophytes accounting for up to 67 % of total chl a. Changes in phytoplankton community composition showed strongest correlations with temperature. Light-saturated chl a-specific rates of photosynthesis and daily primary productivity varied with season and ranged from 1.6 to 14 mg C (mg chl a) ?1?h?1 (32–803 mg C m?3?day?1). Calculated daily rates added up to an annual carbon fixation rate of 84 g C m?3?year?1. Overall, changes in phytoplankton community composition and primary productivity in North Inlet showed a strong dependence on temperature, with PAR and spectral irradiance playing a relatively minor role due to short residence times, strong tidal forcing and vertical mixing.  相似文献   

8.
During summer, bloom-forming cyanobacteria, including Anacystis, Aphanizomenon, and Microcystis aeruginosa, dominate tidal-fresh waters of the upper Potomac River estuary with densities exceeding 108 cells l?1. In an attempt to determine the importance of these high cyanobacteria densities to planktonic herbivory in the system, short-term grazing experiments were conducted in July and August 1987. Using size-fractionated river phytoplankton assemblages, zooplankton grazing rates were determined for dominant or subdominant planktonic microzooplankton and mesozooplankton feeding on 14C-labeled river assemblages, 14C-labeled river assemblages enriched with unlabeled cyanobacteria, and unlabeled river assemblages enriched with 14C-labeled cyanobacteria. Grazing rates were estimated for the rotifers Polyarthra remata, Hexarthra mira, Asplanchna brightwelli, Brachionus angularis, Epiphanes sp., Trichocerca similis, and the cyclopoid copepod Cyclops vernalis. Neither rotifers nor the copepod grazed heavily on Microcystis. Rotifer grazing rates on labeled cyanobacteria ranged from 4 to 1,650 nl· [individual · h]?1 while copepod rates ranged from undetectable to 135 μl · [copepod · h]?1. Grazing rates on labeled river phytoplankton assemblages were 4–100 times higher than noted for zooplankton feeding on cyanobacteria. The addition of the colonial alga to labeled river phytoplankton assemblages resulted in mixed zooplankton responses, that is, lower and higher grazing rates than observed on river assemblages with no added cyanobacteria. Total zooplankton demand for cyanobacteria and river phytoplankton assemblages was estimated for the study period July–August 1987. Rotifer plus C. vernalis herbivory would have removed 1–5% and 49%, respectively, of the standing stock of the two autotroph pools each day. Literature-derived clearance rates for Bosmina indicate, however, that herbivory by this cladoceran could increase demand to 24% and 60%, respectively, in bloom and nonbloom assemblages. These data suggest that the majority of cyanobacterial production remains ungrazed and may be transported to the lower estuary for salinity-induced aggregation and sedimentation.  相似文献   

9.
We conducted monthly bioassay experiments to characterize light and nutrient use efficiency of phytoplankton communities from the chlorophyll-a maximum located in the tidal freshwater region of the James River Estuary. Bioassay results were interpreted in the context of seasonal and inter-annual variation in nutrient delivery and biomass yield using recent and long-term data. Bioassay experiments suggest that nutrient limitation of phytoplankton production has increased over the past 20 years coinciding with reductions in point source inputs and estuarine dissolved nutrient concentrations. Despite increasing nutrient stress, chlorophyll concentrations have not declined due to more efficient nutrient usage. Greater CHLa yield (per unit of N and P) may be due to feedback mechanisms by which the presence of toxin-producing cyanobacteria inhibits grazing by benthic and pelagic filter-feeders. Seasonal patterns in nutrient limitation indicate that phytoplankton in the James respond to variations in inflow concentrations of dissolved nutrients. This association gives rise to an atypical pattern whereby the severity of nutrient limitation diminishes with low discharge in late summer due to minimal dilution of local point sources inputs by riverine discharge. We suggest that this may be a common feature of estuaries located in proximity to urbanized areas.  相似文献   

10.
Patterns in phytoplankton biomass are essential to understanding estuarine ecosystem structure and function and are the net result of various gain and loss processes. In this study, patterns in phytoplankton biomass were explored in relation to a suite of potentially regulating factors in a well-flushed, subtropical lagoon, the Matanzas River Estuary (MRE) in northeast Florida. We examined temporal variability in water temperature, light availability, nutrient concentrations, phytoplankton productivity, and phytoplankton standing stock over 8 years (2003–2010) and explored relationships among variables through correlation analysis. Laboratory experiments in the spring and summer of 2009 quantified phytoplankton growth rates, nutrient limitation potential, and zooplankton grazing rates. The potential influence of oyster grazing was also examined by scaling up population metrics and filtration rate estimates. Results indicated that phytoplankton biomass in the study area was relatively low mainly due to a combination of low temperature and light availability in the winter and consistent tidal water exchange and bivalve grazing throughout the year. Relatively low levels of phytoplankton standing stock and small inter-annual variability within the MRE reflect a balance between gain and loss processes which provide a degree of resilience of the system to natural and anthropogenic influences.  相似文献   

11.
The effect of a 7-mo drought (La Niña 1988) was evaluated on pelagic properties in the large Patos Lagoon (30°12′–32°12′S, 50°40′–52°15′W). From December 1987 to December 1988, surface water was sampled along the longitudinal axis of the lagoon for temperature (10–29°C), salinity (0–31.4), dissolved inorganic phosphate (0.02–4.73 μM), nitrate (0.05–66.25 μM), nitrite (0.01–3.54 μM), ammonium (0.09–33.19 μM), silicate (1.11–359.20 μM), phytoplankton chlorophylla (chl; 0.4–41.2 mg m?3), primary production (gross PP 1.72–161.82 mg C m3 h?1; net PP 0.04–126.19 mg C m3 h?1), and species composition and abundance (42–4,961 ind ml?1). In the wet season the whole system acted as a river and light availability limited phytoplankton growth. During the drought from February to August monthly freshwater runoff was low and the inflow of marine water to the southern sector generated spatial variability of the analyzed properties and five functional areas were recognized. The northernmost Guaíba River (1) presented low light availability and phytoplankton chl concentration compared to the northern limnetic area (2) (chl mean 13.3 μg I?1; max 41.2 μg I?1; gross PP mean 52.6 mg C m3 h?1), which acted as a biological filter removing dissolved inorganic nutrients. Silicate concentration was strongly diminished in this area due to diatom uptake (Aulacoseira granulata, 9,330 cells ml?1). In the northern limnetic and central oligohaline (3) areas, phytoplankton biomass was controlled by light but nitrogen also played a limiting role. In the southern area (4) that is under marine influence, low chl concentration (mean 4.5 μg I?1) and gross PP (mean 28.1 mg C m3 h?1) coincided with co-limitation of nitrogen and light while the channel to the ocean (5) was strongly light limited. This study demonstrated that low light and high silicate input had a buffer effect at Patos Lagoon, hampering negative expression of cultural eutrophication. The main effect during the drought period occurred in the northern limnetic region, where low silicate values due to diatom uptake led to higher cyanobacteria abundance, and enhanced mineralization occurred in the central oligohaline lagoon. Increased rainfall resulted in light limitation and decreasing primary production in the entire freshwater lagoon, and the adjacent coastal region benefited from nutrient enrichment.  相似文献   

12.
In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3?±?0.7 km delineated by an average gradient of 3.0?±?6.0 μg Chl a L?1 km?1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7?±?2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.  相似文献   

13.
Benthic microalgae (BMA) inhabit the upper few centimeters of shelf sediments. This review summarizes the current information on BMA communities in the South Atlantic Bight (SAB) region of the Southeastern US continental shelf to provide insights into the potential role of these communities in the trophodynamics and biogeochemical cycling in shelf waters. Benthic irradiance is generally 2–6% of surface irradiance in the SAB region, providing sufficient light to support BMA primary production over 80–90% of the shelf width. BMA biomass greatly exceeds that of integrated phytoplankton biomass in the overlying water column on an areal basis. The SAB appears to have lower BMA biomass, but higher production than most temperate continental shelves. Annual production estimates average 101 and 89 g C m?2 year?1 for 5–20 and >?20 depth intervals, respectively. However, high variation in rates and biomass in time and space make comparisons between studies difficult. Submarine groundwater discharge (SGD) rather than the water column or in situ N regeneration from organic matter maybe the major “new” N source for BMA. The estimated supply of N (1.2 mmol N m?2 day?1) by SGD closely approximates the rates needed to support BMA primary production (3.1 to 1.6 mmol N m?2 day?1) in the sediments of the SAB. Identifying the source(s) of fixed N supporting the BMA community is essential for understanding the carbon dynamics and net ecosystem metabolism within the large area (76,000 km2) of the continental shelf in the SAB as well other temperate shelves worldwide.  相似文献   

14.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

15.
Observations of the composition and rate of input of organic matter to the sea floor were made at three locations in lower Cook Inlet, Alaska, during five cruises taken in the spring and summer of 1978. Total particulate, plant pigment, carbon, nitrogen, fecal pellet, and phytoplankton cell fluxes, inferred from sediment trap samples, were related to algal biomass and production in overlying waters. A daily average of 7.5% of the phytoplankton biomass was lost to the bottom. Of this loss, 83% was attributable to zooplankton grazing and fecal pellet production. At the three sampling sites, an average of 39 g C m?2 (range of 17–60 g C m?2, was sedimented to the bottom between May and August. This carbon flux represented an average of 12% of the total primary production measured for that time period. Kachemak Bay eastern arm of the inlet, is identified as an extremely productive embayment in which large amounts of organic matter were transferred to the sea floor.  相似文献   

16.
Aquatic primary productivity, mangrove ecology, and fish community dynamics were investigated in the Teacapán-Agua Brava lagoon-estuarine system, the most extensive mangrove ecosystem on the Pacific coast of Mexico with three species of mangroves distributed heterogeneously (Laguncularia racemosa, Rhizophora mangle, andAvicennia germinans). Tree density was 3,203 trees ha?1 and basal area was 14.0 m2 ha?1. Litterfall was 1,417 g m?2 yr?1, characteristic of a productive riverine forest. The degradation constant forLaguncularia racemosa leaves varied from 1.71 to 4.7 yr?1 and mean annual net aquatic productivity was 0.41 g C m?3 d?1. There were high concentrations of humic substances (up to 150 mg l?1) early in the wet season. Seasonal variations of the above parameters seemed closely related to the ecology of fish populations. There were 75 fish species distributed in two principal assemblages associated with wet and dry seasons. Diversity and biomass analysis indicated 18 dominant species. Total biomass of the community in this coastal system was estimated at 10 g wet wt m?2. The highest biomass occurred in the wet season. The most common fish species wereMugil curema, Achirus mazatlanus, Galeichthys caerulescens, Arius liropus, Diapterus peruvianus, Lile stolifera, Centropomus robalito, andEucinostomus sp., all of which have fishery importance. Primary productivity and fish community ecology are controlled by habitat characteristics, river discharge, and climatic seasonality.  相似文献   

17.
A nutrient mass balance for the tidal freshwater segment of the James River was used to assess sources of nutrients supporting phytoplankton production and the importance of the tidal freshwater zone in mitigating nutrient transport to marine waters. Monthly mass balances for 2007–2010 were based on riverine inputs, local point sources (including sewer overflow events), ungauged inputs, riverine outputs, and tidal exchange. The tidal freshwater James River received exceptionally high areal loads (446 mg TN m?2 day?1 and 55 mg TP m?2 day?1) compared to other estuaries in the region and elsewhere. P inputs were principally from riverine sources (84 %) whereas point sources contributed appreciably (54 %) to high N loads. Despite high loading rates and short water residence time, areal mass retention was high (143 mg TN m?2 day?1 and 33 mg TP m?2 day?1). Retention of particulate fractions occurred during high discharge, whereas dissolved inorganic fractions were retained during low discharge when chlorophyll-a concentrations were high. On an annualized basis, P was retained more effectively (59 %) than N (32 %). P was retained by abiotic mechanisms via trapping of particulate forms, whereas N was retained through biological assimilation of dissolved inorganic forms. Results from a limited suite of stable isotope determinations suggest that DIN from point sources was preferentially retained. Combined inputs from diffuse and point sources accounted for only 20 % and 36 % (respectively) of estimated algal N and P demand, indicating that internal nutrient recycling was important to sustaining high rates of phytoplankton production in the tidal freshwater zone.  相似文献   

18.
Seasonal changes in phytoplankton biomass and production, total zooplankton biomass, and biomass and potential production rates of the two dominant copepods, Acartia hudsonica (formerly called Acartia clausi) and Acartia tonsa are described for several stations in Narragansett Bay, R.I. Plankton in the bay behaved as a single population with simultaneous changes occurring at the upper bay (Station 5) and the lower bay (Station 1). Phytoplankton biomass was higher in the upper bay ( \(\bar x\) =16.95 mg chl a·m?3) than in the lower bay ( \(\bar x\) =6.37 mg chl a·m?3) and these 0269 0101 V differences in biomass were reflected in the phytoplankton production rates. The zooplankton, which was dominated by A. hudsonica in the spring and early summer and A. tonsa during summer and fall, showed no such consistent differences between the stations. Mean A. hudsonica biomass (St 1, \(\bar x\) ;=82.7 mg dry wt·m?3; St 5, _ \(\bar x\) ;=95.2 mg dry wt·m?3) exceeded that of A. tonsa (St 1, \(\bar x\) ;=56.7 mg dry wt·m?3; St 5, \(\bar x\) ;=60.0 mg dry wt·m?3). Potential production rates of the two Acartia 0269 0101 V spp. were strongly temperature dependent. Despite the higher biomass levels of A. hudsonica, low temperatures resulted in lower potential production rates ( \(\bar x\) ; St 1=7.25 mg C·m?3 day?1; \(\bar x\) ; St 5=10.77mg C·m?3 day?1) and biomass doubling times of up to 9.6 days. Potential production rates of A. tonsa at summer temperatures were high ( \(\bar x\) ; St 1=19.0 mg C·m?3 day?1; \(\bar x\) ; St 5=22.9 mg C·m?3 day?1) and biomass doubling times were generally less than one day.  相似文献   

19.
The River Gash Basin is filled by the Quaternary alluvial deposits, unconformably overlying the basement rocks. The alluvial deposits are composed mainly of unconsolidated layers of gravel, sand, silt, and clays. The aquifer is unconfined and is laterally bounded by the impermeable Neogene clays. The methods used in this study include the carry out of pumping tests and the analysis of well inventory data in addition to the river discharge rates and other meteorological data. The average annual discharge of the River Gash is estimated to be 1,056?×?106 m3 at El Gera gage station (upstream) and 587?×?106 m3 at Salam-Alikum gage station (downstream). The annual loss mounts up to 40% of the total discharge. The water loss is attributed to infiltration and evapotranspiration. The present study proofs that the hydraulic conductivity ranges from 36 to 105 m/day, whereas the transmissivity ranges from 328 to 1,677 m2/day. The monitoring of groundwater level measurements indicates that the water table rises during the rainy season by 9 m in the upstream and 6 m in the midstream areas. The storage capacity of the upper and middle parts of the River Gash Basin is calculated as 502?×?106 m3. The groundwater input reach 386.11?×?106 m3/year, while the groundwater output is calculated as 365.98?×?106 m3/year. The estimated difference between the input and output water quantities in the upper and middle parts of the River Gash Basin demonstrates a positive groundwater budget by about 20?×?106 m3/year  相似文献   

20.
We investigated trophic relationships involving microzooplankton in the low salinity zone of the San Francisco Estuary (SFE) as part of a larger effort aimed at understanding the dynamics of the food web supporting the endangered delta smelt, Hypomesus transpacificus. We performed 14 cascade experiments in which we manipulated the biomass of a copepod (Limnoithona tetraspina, Pseudodiaptomus forbesi, or Acartiella sinensis) and quantified responses of lower trophic levels including bacterioplankton, phytoplankton, and microzooplankton. Microzooplankton comprised a major food source for copepods; 9 out of 14 experiments showed removal of at least one group of microzooplankton by copepods. In contrast, the impact of copepods on phytoplankton was indirect; increased copepod biomass led to greater growth of phytoplankton in 3 of 14 experiments. Estimated clearance rates on microzooplankton were 4 mL day?1 for L. tetraspina and 2–6 mL day?1 for P. forbesi, whereas A. sinensis consumed mainly copepod nauplii. Complex trophic interactions, including omnivory, among copepods, microzooplankton, and different components of the phytoplankton likely obscured clear trends. The food web of the SFE is probably less efficient than previously thought, providing poor support to higher trophic levels; this inefficient food web is almost certainly implicated in the continuing low abundance of fishes, including the delta smelt that use the low salinity zone of the San Francisco Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号