首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

2.
In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present-day bottom water redox conditions range from fully oxygenated and seasonally hypoxic to almost permanently anoxic and sulfidic. Strong surface enrichments of Fe-oxide bound P are observed at oxic and seasonally hypoxic sites but not in the anoxic basins. Reductive dissolution of Fe-oxides and release of the associated P supports higher sediment-water exchange of PO4 at hypoxic sites (up to ∼800 μmol P m−2 d−1) than in the anoxic basins. This confirms that Fe-bound P in surface sediments in the Baltic acts as a major internal source of P during seasonal hypoxia, as suggested previously from water column studies. Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca-P formation or biogenic Ca-P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased primary productivity. Historical records of bottom water oxygen at two sites (Bornholm, Northern Gotland) show a decline over the past century and are accompanied by a rise in values for typical sediment proxies for anoxia (total sulfur, molybdenum and organic C/P ratios). While sediment reactive P concentrations in anoxic basins are equal to or higher than at oxic sites, burial rates of P at hypoxic and anoxic sites are up to 20 times lower because of lower sedimentation rates. Nevertheless, burial of reactive P in both hypoxic and anoxic areas is significant because of their large surface area and should be accounted for in budgets and models for the Baltic Sea.  相似文献   

3.
Tracer technology has been used to understand water circulation in marine systems where the tracer dose is commonly injected into the marine waters through controlled experiments, accidental releases or waste discharges. Anthropogenic discharges of 129I have been used to trace water circulation in the Arctic and North Atlantic Ocean. Here, 129I, together with 127I, is utilized as a tracer of water pathways and circulation in the Baltic Sea through collection of seawater depth profiles. The results indicate the presence of 129I signatures which are distinct for each water mass and provide evidence for: (1) inflow water masses through the Drogden Sill that may reach as far as the SW of the Arkona Sea, (2) a portion of North Atlantic water in the bottom of Arkona basin, (3) cyclonic upwelling which breaks through the halocline in a pattern similar to the Baltic haline conveyor belt and (4) more influx of fresher water from the Gulf of Finland and Bothnian Sea in August relative to April. These findings provide advances in labeling and understanding water pathways in the Baltic Sea.  相似文献   

4.
Rößler, D., Moros, M. & Lemke, W. 2010: The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas, 10.1111/j.1502‐3885.2010.00180.x. ISSN 0300‐9483. The Littorina transgression is one of the most pronounced environmental events in the Holocene history of the Baltic Sea. It changed the hydrographic system from the freshwater Ancylus Lake into the brackish‐marine Littorina Sea. Here, 18 cores from two western Baltic basins, Mecklenburg Bay and the Arkona Basin, were analysed. We show that, besides biological indicators, sedimentary organic carbon, C/N ratio, bulk δ13C isotope values and carbonate content display clearly the transition from Ancylus Lake to the Littorina Sea. The first appearances of benthic foraminifers, marine molluscs and ostracods represent the onset of brackish‐marine conditions in the bottom waters. Central Arkona Basin sediments display more abrupt shifts in geochemical parameters and microfossil records at the transition from Ancylus Lake to the Littorina Sea than those from Mecklenburg Bay. Mixing of reworked Ancylus material with Littorina Sea stage material was stronger in Mecklenburg Bay, resulting in less pronounced proxy parameter changes and older bulk material dates. Radiocarbon dating of both calcareous material (benthic foraminifers, mollusc shells) and bulk fractions at the transgression horizon shows large age discrepancies. Based on calcareous fossil dates it appears that marine waters began to enter Mecklenburg Bay c. 8000 cal. a BP. In the Arkona Basin the first marine signals are recorded approximately 800 years later, c. 7200 cal. a BP. This indicates a transgression pathway via the Great Belt into Mecklenburg Bay and then into the Arkona Basin.  相似文献   

5.
Oxygen isotope profiles along the growth axis of fossil bivalve shells of Macoma calcarea were established to reconstruct hydrographical changes in the eastern Laptev Sea since 8400 cal yr B.P.. The variability of the oxygen isotopes (δ18O) in the individual records is mainly attributed to variations in the salinity of bottom waters in the Laptev Sea with a modern ratio of 0.50‰/salinity. The high-resolution δ18O profiles exhibit distinct and annual cycles from which the seasonal and annual salinity variations at the investigated site can be reconstructed. Based on the modern analogue approach oxygen isotope profiles of radiocarbon-dated bivalve shells from a sediment core located northeast of the Lena Delta provide seasonal and subdecadal insights into past hydrological conditions and their relation to the Holocene transgressional history of the Laptev Sea shelf. Under the assumption that the modern relationship between δ18Ow and salinity has been constant throughout the time, the δ18O of an 8400-cal-yr-old bivalves would suggest that bottom-water salinity was reduced and the temperature was slightly warmer, both suggesting a stronger mixture of riverine water to the bottom water. Reconstruction of the inundation history of the Laptev Sea shelf indicates local sea level ∼27 m below present at this time and a closer proximity of the site to the coastline and the Lena River mouth. Due to continuing sea level rise and a southward retreat of the river mouth, bottom-water salinity increased at 7200 cal yr B.P. along with an increase in seasonal variability. Conditions comparable to the modern hydrography were achieved by 3800 cal yr B.P.  相似文献   

6.
The formation of authigenic Ca-rich rhodochrosite (ACR) in sapropelic sediments of the Gotland Basin, Baltic Sea, is governed by deepwater renewal processes whereby saline water from the North Atlantic flushes the brackish anoxic Baltic Deeps. The carbon and oxygen isotopic compositions of these Mn-carbonates suggest that ACR formation takes place just below the sediment surface and that dissolved compounds from the deepwater column, such as water and bicarbonate molecules, were incorporated in ACR during authigenesis. Porewaters near the sediment surface display δ18O values of −5.4‰ (VSMOW) and are generally depleted in 18O, compared to the oxygen isotopic composition of water in equilibrium with Mn-carbonate solid solutions (ACR δ18O values are −4.6‰). This suggests that early burial diagenetic processes significantly modify the initial isotopic composition of water during Mn-carbonate formation. The reduction of sulfate having δ18O values of +8.4‰ accounts for a permanent enrichment of porewater 18O and observed δ18O values at depth equal to −4.6‰. However, this process does not explain the observed disequilibrium in the oxygen isotopic composition between water and ACR close to the sediment surface where Mn-carbonate formation takes place. Based on isotopic mass balance calculations, we suggest that MnO2 with δ18O values of +8.9‰ released oxygen enriched in 18O into the anoxic porewaters close below the sediment surface. This process should occur after oxygenation events during deepwater renewal when MnO2 accumulates at the surface of anoxic sediments. Manganese carbonates formed in these waters display δ18O values of ∼1.0‰ heavier than values expected solely from the initial deepwater composition. This quantitatively explains the discrepancy between paleosalinities calculated from ACR δ18O based on Mn-carbonate/water isotopic equilibrium fractionation and direct observations for the same period. Our results emphasize the important role of microbial MnO2 reduction during rhodochrosite authigenesis and suggest that Mn(II) activity, rather than alkalinity, is the limiting component for sedimentary Mn-carbonate formation.  相似文献   

7.
Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25?±?0.56?mmol?m?2?d?1 on anoxic bottoms, and ?0.01?±?0.08?mmol?m?2?d?1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69?±?0.26?mmol?m?2?d?1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean?Csea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.  相似文献   

8.
During and after deglaciation, Lake Vättern developed from a proglacial lake situated at the westernmost rim of the Baltic Ice Lake (BIL), into a brackish water body connecting the North Sea and the Baltic Sea, and finally into an isolated freshwater lake. Here we present geochemical and mineralogical data from a 70‐m composite sediment core recovered in southern Lake Vättern. Together with a radiocarbon age model of this core, we are able to delineate the character and timing of the different lake stages. In addition to a common mineralogical background signature seen throughout the sediment core, the proglacial sediments bear a calcite imprint representing ice‐sheet transported material from the limestone bedrock that borders the lake basin in the northeast. The proglacial fresh to brackish water transition is dated to 11 480±290 cal. a BP and is in close agreement with other regional chronologies. The brackish period lasted c. 300 years and was followed by a c. 1600 year freshwater period before the Vättern basin became isolated from the Initial Littorina Sea. Decreasing detrital input, increasing δ13C values and the appearance of diatoms in the upper 15 m of the sediment succession are interpreted as an overall increase in biological productivity. This mode of sedimentation continues until the present and is interpreted to mark the final isolation of the lake at 9530±50 cal. a BP. Consequently, the isolation of Lake Vättern was not an outcome of the Ancylus Lake regression, but rather because of ongoing continental uplift in the early Littorina period.  相似文献   

9.
《Applied Geochemistry》2002,17(1):29-38
During the EU funded project BASYS (Baltic Sea System Study) short (Niemistö-type) and long (box and piston cores) sediment cores were taken which cover sedimentation during the past 8 ka. The uppermost part of the sedimentary sequence was chosen for a detailed geochemical study and freeze dried samples were analysed for about 20 elements but only the elements Mn and Ca are discussed. An age model was constructed using radiometric dating results by 210Pb/137Cs and 14C AMS. Significant correlation exists along the cores between very high Mn and moderately high Ca due to occrrences of the mineral rhodochrosite (kuthnahorite), a complex Mn(Ca) carbonate. This mineral is thought to be produced when salt water meets the pool of dissolved Mn at the bottom of the Gotland Basin. During favourable hydrographic conditions, e.g. strong northwesterly winds, salt water from the North Sea invades even the deepest parts of the central Baltic. Mn2+ which is produced mainly by the dissolution of ferromanganse oxides/oxyhydroxides in the water colum and in the course of destruction of organic matter in the sediments, combines with HCO32- and Ca2+ in the seawater to form rhodochrosite. After burial, this mineral stays in the sediment and is seen as light-coloured layers. A certain cyclicity in the upper 1.5 m of the cores was observed in that about 200–300 a periods of elevated Mn–Ca are followed by periods with lower Mn–Ca of similar duration. An explanation for the observed cyclicity may be sea level variations: during rising sea level (transgression) more and more saline water is pushed into the deep basin of the Baltic Sea and if conditions are favourable (high dissolved Mn) the mineral rhodochrosite is precipitated.  相似文献   

10.
《Applied Geochemistry》2002,17(4):337-352
Organic C burial rates and C–S relationships were investigated in the Holocene sediment sequences of 3 shallow polymictic coastal lagoons in the southern Baltic Sea to better understand the biogeochemical cycling of C and S in these environmental systems. The results show that these lagoons may have a considerable influence on the environmental status of the southern Baltic Sea area in having the potential to act as a temporary sink or source for heavy metals. High organic C accumulation rates (Corg-AR) can be observed in the sediments due to a high organic matter supply from land and a high productivity of the water bodies as a result of eutrophication. However, organic C burial does not increase as a result of increasing sediment accumulation rates (SAR). Even when high sedimentation rates do occur, there appears to be a thorough recycling and resuspension of the sediment enhancing the biological decay of organic matter before burial or the removal of organic matter from the system by transport. That is why high SAR in the coastal lagoons do not enhance pyrite formation, and thereby permanent fixing of heavy metals in the sediments, to the extent that could be expected from their magnitude. Initially there is a high potential for a temporary binding of heavy metals, but the latter are likely to be subject to mobilization and redistribution within the sediments and the water column. The patterns of burial of organic and mineral matter are different from those observed in the present-day Baltic Proper, implying possible important links in deposition between the central and coastal areas of the Baltic Sea and implications for C cycling in the ecosystem of the Baltic Sea.  相似文献   

11.
The Skagerrak is a key region for our understanding of the Late Quaternary history of the East North Sea, of the entire Baltic basin and of the adjacent Scandinavian land areas. The depositional history of the postglacial Skagerrak began after the ice margin withdrew from Jutland to close to the modern Norwegian coast around 14 ka B.P. to 13 ka B.P. The Skagerrak was immediately filled by marine waters from the Norwegian Sea, but retained a fjord-like shape until approximately 10.2 ka B.P., when a connection opened across central Sweden to the Baltic Ice Lake. This seaway closed around 9 ka B.P., but a new seaway to the Baltic basin opened subsequently (probably close to 8.5 ka B.P.) through the Danish Belts. At about 10 ka B.P. the Skagerrak 'fjord' also started to change shape due to the flooding of the large former land area under the modern North Sea. Paleo-geography and -bathymetry of these changes can now be quantified in great detail. The young Quaternary sediments of the Skagerrak consist of fine-grained clays with minor amounts of silty and sandy material and are mostly of terrigenous origin, whereas biogenic components in general make up only a minor proportion of the bulk sediment. Prior to 10 ka B.P. a major portion of these deposits originated from the Fennoscandian regions N and E of the Skagerrak, while ice-rafting contributed coarse terrigenous components to the usually fine-grained sediments and while it was filled by brackish surface and cold polar bottom waters. At approximately 10 ka B.P., more temperate waters started to fill the Skagerrak and a good portion of the sediment seems to have originated from areas to the South. The Norwegian Coastal Current can only be documented for the past 7 ka; subtle changes of the pelagic and benthic environments could also be documented for later intervals.  相似文献   

12.
Isotopic and mineralogic data from an 8500-m thick section of the Great Valley sequence, northern California, indicate that changes in the δ18O values of authigenic minerals resulted from the conversion of smectite to a 10 Å clay-mineral as temperature increased with burial in the Jurassic- Cretaceous outer-arc basin. The clay-mineral assemblage in mudstone is characterized by a proportional increase of the 10 Å clay-mineral with increasing stratigraphic depth, and by a depletion in the δ18O value of the mixed-layer smectite/10 Å clay-mineral with descending stratigraphic position from +21.9 to + 15.5%. SMOW. Modeling of the oxygen isotopic data from authigenic phases, based on equilibrium fractionation during clay-mineral diagenesis, indicates that δ18O values of calcite in mudstones and of calcite cements in sandstone precipitated along a temperature gradient of about 25°C/km during maximum burial to about 6–7 km. δD values of the mixed-layer smectite/10 Å clay-mineral range between ?69 to ?44%. SMOW. Using temperatures calculated from the oxygen isotopic data, the deuterium and oxygen isotopic data indicate that the smectite underwent late-stage dehydration and probably buffered the composition of formation waters from sea water values to isotopic compositions of δ18O ≈ +8%. SMOW and δD ≈ ?25%. SMOW. The δ13C values of calcite from mudstone and sandstone imply that crystallization of authigenic calcite was linked to organic diagenesis during which dissolved HCOt-3 was continuously enriched in 13C as temperature increased with burial. At the base of the sequence and immediately overlying the ophiolitic basement rocks, several hundred meters of strata were altered by more oxygen-depleted (δ18O ? +4 to +5%.) hydrothermal fluids emanating from the ophiolitic rocks, probably at maximum burial depth.  相似文献   

13.
Iron and manganese solubility at the sediment/water interface has been studied at a water depth of 20 m in Kiel Bight, Western Baltic. By means of an in situ bell jar system enclosing 3.14 m2 sediment surface and 2094 l water a complete redox turn-over in the bottom water was simulated in an experiment lasting 99 days. The concentration of dissolved Fe in the bell jar water never exceeded 0.041 μmol · dm?3during the first 50 days of the experiment and then rose abruptly as the Eh fell from +600 to ?200 mV. The concentration of dissolved Fe under oxic and anoxic conditions seems to be limited by equilibria with solid Fe-phases (hydroxides and amorphous sulphide, respectively). In contrast to Fe, manganese was released continuously from the bottom during the first 50 days of the experiment leading to exponentially increasing manganese concentrations in the bell jar water. During this time dissolved O2 had become ready depleted and pH had dropped from 8.3 to 7.5. Contrary to iron, manganese being solubilized in reduced sediment layers can penetrate oxic strata in metastable form due to slow oxidation kinetics; when the redoxcline moves upwards Mn2+ is enriched in bottom waters. The maximum concentration of dissolved Mn under anoxic conditions is controlled by a solid phase with solubility properties similar to MnCO3 (rhodochrosite). Bottom water enrichment in dissolved Mn2+ could be traced to originate from excess solid manganese within the top 3 cm of the sediment.  相似文献   

14.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

15.
The isostatic land uplift after the latest glaciation period in northern Europe means that the descending wave base in the eutrophicated Baltic Sea continuously exposes new bottom areas to increasing wind and wave-induced erosion. Erosion adds considerable amounts of phosphorus (P) and clay particles to the water column. This study has used a dynamic mass-balance model to investigate how land uplift affects the whole P cycle in the five major subbasins of the Baltic Sea. The model uses a unitary set of variables and constants for all subbasins with the exception of measurable, basin-specific driving variables. Differences in P concentrations between the subbasins could be quite accurately quantified only when the land uplift gradient was used as a driving variable. The clarifying effect from clay particles was found to be a major reason why those subbasins with the most intensive land uplift rates were also the ones with the lowest P concentrations. Without using the land uplift gradient as a model input, concentration differences could not be quantitatively explained in a meaningful way. Furthermore, simulations showed that clay particle erosion from land uplift has a substantial impact on all major internal P fluxes of the Baltic Sea. At the turn of the millennium, one of the subbasins (the Bothnian Bay) was oligotrophic, whilst the other four major subbasins were mesotrophic. Without the clarifying effect from the clay particles added to the water column during erosion of the rising seafloor, all five major subbasins of the Baltic Sea would probably be substantially more eutrophic.  相似文献   

16.
We investigated the dissolved oxygen metabolism of the Curonian Lagoon (Baltic Sea) to assess the relative contributions of pelagic and benthic processes to the development of transient hypoxic conditions in shallow water habitats. Metabolism measurements along with the remote sensing-derived estimates of spatial variability in chlorophyll a were used to evaluate the risk of hypoxia at the whole lagoon level. Our data demonstrate that cyanobacterial blooms strongly inhibit light penetration, resulting in net heterotrophic conditions in which pelagic oxygen demand exceeds benthic oxygen demand by an order of magnitude. The combination of bloom conditions and reduced vertical mixing during calm periods resulted in oxygen depletion of bottom waters and greater sediment nutrient release. The peak of reactive P regeneration (nearly 30 μmol m?2 h?1) coincided with oxygen depletion in the water column, and resulted in a marked drop of the inorganic N:P ratio (from >40 to <5, as molar). Our results suggest a strong link between cyanobacterial blooms, pelagic respiration, hypoxia, and P regeneration, which acts as a feedback in sustaining algal blooms through internal nutrient cycling. Meteorological data and satellite-derived maps of chlorophyll a were used to show that nearly 70 % of the lagoon surface (approximately 1,000 km2) is prone to transient hypoxia development when blooms coincide with low wind speed conditions.  相似文献   

17.
In depressions of the Baltic Sea, where the bottom is periodically marked by stagnation, silt contains as much as 5% Mn (up to 17% in some layers) and 9–10% Corg. Silt in such depressions is laminated. The marine sediment sequence is stratified due to the influx of oceanic water into sea: the upper layers are oxic, while the lower (near-bottom) layers are hydrosulfuric. Boundary between them is represented by the transitional O2-H2S layer. This zone (redox barrier) is marked by drastic variation in Eh. Zone below this barrier is characterized by the accumulation of huge amounts of the dissolved manganese (Mn2+) and iron (Fe2+), which diffuse from the hydrosulfuric layer into the oxic layer under the influence of gradient and precipitated as suspeusion with as much as 15% Fe and 45% Mn. When fresh oxygenated saline water is transported to depressions, the hydrosulfuric setting gives way to oxic one and the dissolved elements are transformed into the particulate phases as hydroxides and geologically instantly precipitated at the bottom. After 5–10 yr, the setting changes; hydrogen sulfide is again delivered to water column from the bottom. This is accompanied by supply of the dissolved Mn2+ and Fe2+ previously accumulated as gel-type sediment at the bottom. Thus, the cycle of elements is repeated. The latter, however, is not completely dissolved. Some portion remains at the bottom as black rhodochrosite microlayers (laminas) that contain as much as 29% Mn. The black laminas accumulated during aeration include remains of bottom foraminifers. In addition, the bottom comprises pale diatom laminas and brownish gray varieties composed of clayey and organic substances. Bulk samples of the laminated silt contain as much as 12.9% Mn or 26.9% MnCO3. Depressions in the Baltic Sea represent a unique site of the Earth marked by accumulation of the carbonate-manganiferous sediments at present. We believe that Oligocene manganese carbonate-oxide ores described by N.M. Strakhov and coauthors were accumulated in the same manner. Compositions of manganiferous sediments in the Baltic region and some ancient ores in Europe are compared. The author studied five stages of Mn accumulation and sediment transformation into ores.  相似文献   

18.
From February 1992 until June 1993, the distribution of dissolved and particulate phosphorus and nitrogen was investigated in the Ems estuary at approximately monthly intervals. Nutrient import was quantified from the river load. Nutrient export to sea was quantified from river discharge and from the salinity-nutrient gradient in the outer estuary. In addition, sediment cores were taken from four sites along the main axis of the estuary in October 1992. On the basis of these data a nitrogen and phosphorus budget was made. On an annual basis, 45 × 106 mol P and 2,360 × 106 mol N are imported into the Ems estuary. Freshwater runoff is the main source of input, accounting for about 92% of the nitrogen input and 71% of the phosphorus input. Import of particulate phosphorus from the sea is important in the phosphorus budget (27%). Seventy-five percent of the nitrogen input is transported to the North Sea. Denitrification is the major loss factor (19% of the nitrogen input), and burial explains 6%. Of the phosphorus input, 60% is transported to the North Sea and 40% accumulates in the sediment. Nitrogen import during summer explains about one third of the annual primary production, indicating that nitrogen turn over is about three times. Phosphorus import during summer explains less than 16% of the annual primary production. We suggest that trapping of particulate P and adsorption onto Fe(oxy)hydroxides during the entire year and the release of Fe-bound P during summer after reduction of Fe(oxy)hydroxides is instrumental in sustaining high primary production, which could not be sustained if it depended only on P imported during the growing season.  相似文献   

19.
Bulk sedimentary nitrogen isotopes (δ15Nbulk) have been primarily used to identify bottom water redox states during deposition in sedimentary environments that have not undergone significant diagenetic or catagenetic alteration. Recently, the utility of sedimentary δ15Nbulk as a paleoredox proxy in hydrocarbon-bearing shale intervals was demonstrated by qualitatively correlating the δ15Nbulk profiles from shale units to their depositional redox conditions. However, the effect of thermal maturity on the δ15Nbulk signal remains unknown. We analyzed samples from three cores from the Devonian–Mississippian age Woodford Shale in the Anadarko Basin with vitrinite reflectance values ranging from the oil window to the gas window in order to investigate how depositional redox conditions and thermal maturation affect the bulk sedimentary δ15N signals. Our results indicate that the δ15Nbulk values for the Woodford do not correlate with thermal maturity. Instead, the δ15Nbulk values primarily reflect the depositional redox conditions, which are supported by trace metal concentrations and depositional features such as burrow abundance and lamination. The expected relationship between δ15Nbulk and paleoredox conditions was observed both within each core and between cores on a basin wide scale, with samples deposited under suboxic bottom water conditions having higher δ15Nbulk values than those deposited under anoxic bottom water conditions. Our data also indicate that redox bottom water column conditions in the Anadarko Basin varied spatially and temporally during the deposition of the Woodford Shale.  相似文献   

20.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号