首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shoreline armoring is extensive in urban areas worldwide, but the ecological consequences are poorly documented. We mapped shoreline armoring along the Duwamish River estuary (Washington State, USA) and evaluated differences in temperature, invertebrates, and juvenile salmon (Oncorhynchus spp.) diet between armored and unarmored intertidal habitats. Mean substrate temperatures were significantly warmer at armored sites, but water temperature similar to unarmored habitats. Epibenthic invertebrate densities were over tenfold greater on unarmored shorelines and taxa richness double that of armored locations. Taxa richness of neuston invertebrates was also higher at unarmored sites, but abundance similar. We did not detect differences in Chinook (O. tshawytscha) diet, but observed a higher proportion of benthic prey for chum (O. keta) from unarmored sites. Given that over 66% of the Duwamish shoreline is armored—similar to much of south and central Puget Sound—our results underscore the need for further ecological study to address the impacts of estuary armoring.  相似文献   

2.
Colonial nesting of long-legged wading birds (Ciconiiformes) in the coastal northeastern U.S. is limited primarily to islands, which provide isolated habitats that are relatively free of ground predators. Estuarine wetlands in this heavily developed region, including foraging wetlands and fringe marshes surrounding nesting islands, are often dominated byPhragmites australis. On Pea Patch Island in Delaware Bay, site of one of the largest and most enduring mixed-species heron colonies on the East Coast, wading birds nest inPhragmites marsh habitat as well as in adjacent upland shrubs and trees. BecausePhragmites is aggressively managed in Delaware Bay, we investigated the relative habitat value of marsh and upland nesting sites for the purpose of developing recommendations for marsh and wildlife management. Utilization of marsh habitat by nesting birds ranged from 27–82% during 1993–1998. Two species (great blue heronArdea herodias and great egretA. alba) never nested inPhragmites, four species (little blue heronEgretta caerulea, snowy egretE. thula, cattle egretBubulcus ibis, and black-crowned night-heronNycticorax nycticorax) nested in approximately equal proportions in both habitats, and one species (glossy ibisPlegadis falcinellus) was largely confined to marsh nesting. Productivity (egg and nestling production) varied between habitats for some species. Cattle egrets produced larger clutches and had higher hatching rates inPhragmites compared to upland habitat. Little blue herons were more successful in the uplands. Managers should retainPhragmites marsh at colony sites, such as Pea Patch Island, where it provides critical habitat for nesting wading birds both as substrate for nesting and buffer habitat to control human disturbance.  相似文献   

3.
Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upland buffer zones directly next to coastal habitats, we tested for relationships between the extent of development in a 100-m buffer adjacent to fringing salt marshes and the structure of marsh plants, benthic invertebrates, and nekton communities. We also wanted to determine useful metrics for monitoring fringing marshes that are exposed to shoreline development. We sampled 18 fringing salt marshes in two estuaries along the coast of southern Maine. The percent of shoreline developed in 100-m buffers around each site ranged from 0 to 91 %. Several variables correlated with the percent of shoreline developed, including one plant diversity metric (Evenness), two nekton metrics (Fundulus heteroclitus %biomass and Carcinus maenas %biomass), and several benthic invertebrate metrics (nematode and insect/dipteran larvae densities in the high marsh zone) (p?<?0.05). Carcinus maenas, a recent invader to the area, comprised 30–97 % of the nekton biomass collected at the 18 sites and was inversely correlated with Fundulus %biomass. None of these biotic metrics correlated with the other abiotic marsh attributes we measured, including porewater salinity, marsh site width, and distance of the site to the mouth of the river. In all, between 25 and 48 % of the variance in the individual metrics we identified was accounted for by the extent of development in the 100-m buffer zone. Results from this study add to our understanding of fringing salt marshes and the impacts of shoreline development to these habitats and point to metrics that may be useful in monitoring these impacts.  相似文献   

4.
Although top-down control of plant growth has been shown in a variety of marine systems, it is widely thought to be unimportant in salt marshes. Recent caging experiments in Virginia and Georgia have challenged this notion and shown that the dominant marsh grazer (the periwinkle,Littoraria irrorata) not only suppresses plant growth, but can denude marsh substrate at high densities. In these same marshes, our field observations suggest that the black-clawed mud crab,Panopeus herbstii, is an abundant and potentially important top-down determinant of periwinkle density. No studies have quantitatively examinedPanopeus distribution or trophic interactions in marsh systems, and its potential impacts on community structure remained unexplored. We investigated distribution and feeding habits ofPanopeus in eight salt marshes along the Mid-Atlantic seashore (Delaware-North Carolina). We found that mud crabs were abundant in tall (4–82 ind m?2), intermediate (0–15 ind m?2), and short-form (0–5 ind m?2)Spartina alterniflora zones in all marshes and that crab densities were negatively correlated with tidal height and positively correlated with bivalve density. Excavation of crab lairs r?utinely produced shells of plant-grazing snails (up to 36 lair?1) and bivalves. Lab experiments confirmed that mud crabs readily consume these abundant marsh molluscs. To experimentally examine potential community effects of observed predation patterns, we manipulated crab and periwinkle densities in a 1-mo field experiment. Results showed thatPanopeus can suppress gastropod abundance and that predation rates increase with increasing snail density. In turn, crab suppression of snail density reduces grazing intensity on salt marsh cordgrass, suggesting presence of a trophic cascade. These results indicate that this previously under-appreciated consumer is an important and indirect determinant of community structure and contribute to a growing body of evidence challenging the long-standing notion that consumers play a minor role in regulating marsh plant growth.  相似文献   

5.
Marshes are important habitats for various life history stages of many fish and invertebrates. Much effort has been directed at restoring marshes, yet it is not clear how fish and invertebrates have responded to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs to marsh restoration by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molt stages of crabs in recently restored marshes that were former salt hay farms to that of adjacent reference marshes with similar physical characteristics in the mesohaline portion of Delaware Bay. Field sampling occurred monthly (April–November) in 1997 and 1998 using replicate daytime otter trawls in large marsh creeks and weirs in smaller intertidal marsh creeks. Blue crabs were either equal or more abundant, the incidence of molting was in most months similar, and population sex ratios were indistinguishable in restored and reference marshes, suggesting that the restored areas attract crabs and support their growth. Site location had a greater effect on the sex ratio of crabs such that marshes closer to the mouth of the bay contained a higher percentage of adult female crabs. In each annual growing season (April–July), the monthly increase in crab size and, in some months (June–July), the incidence of molting at the restored sites was greater than the reference sites, suggesting that the restored sites may provide areas for enhanced growth of crabs. These results suggest that blue crabs have responded positively to restoration of former salt hay farms in the mesohaline portion of Delaware Bay.  相似文献   

6.
Ecotones, the narrow transition zones between extensive ecological systems, may serve as sensitive indicators of climate change because they harbor species that are often near the limit of their physical and competitive tolerances. We investigated the ecotone between salt marsh and adjacent upland at Elkhorn Slough, an estuary in California, USA. Over a period of 10 years, we monitored movement of the ecotone–upland boundary, plant community structure, and physical factors likely to drive ecotone response. At three undiked sites, the ecotone boundary migrated about 1 m landward, representing a substantial shift for a transition zone that is only a few meters wide. Analysis of potential correlates of this upward migration suggests that it was driven by increased tidal inundation. Mean sea level did not increase during our study, but inundation at high elevations did. While the ecotone boundary responded dynamically to interannual changes in inundation at these undiked sites, the plant community structure of the ecotone remained stable. At two diked sites, we observed contrasting patterns. At one site, the ecotone boundary migrated seaward, while at the other, it showed no consistent trend. Diking appears to eliminate natural sensitivity of the ecotone boundary to interannual variation in oceanic and atmospheric drivers, with local factors (management of water control structures) outweighing regional ones. Our study shows that the marsh–upland ecotone migrated rapidly in response to environmental change while maintaining stable plant community structure. Such resilience, stability, and rapid response time suggest that the marsh–upland ecotone can serve as a sensitive indicator of climate change.  相似文献   

7.
The Deepwater Horizon oil spill was the largest marine oil spill in US waters to date and one of the largest worldwide. Impacts of this spill on salt marsh vegetation have been well documented, although impacts on marsh macroinvertebrates have received less attention. To examine impacts of the oil spill on an important marsh invertebrate and ecosystem engineer, we conducted a meta-analysis on fiddler crabs (Uca spp.) using published sources and newly available Natural Resources Damage Assessment (NRDA) and Gulf of Mexico Research Initiative (GoMRI) data. Fiddler crabs influence marsh ecosystem structure and function through their burrowing and feeding activities and are key prey for a number of marsh and estuarine predators. We tested the hypothesis that the spill affected fiddler crab burrow density (crab abundance), burrow diameter (crab size), and crab species composition. Averaged across multiple studies, sites, and years, our synthesis revealed a negative effect of oiling on all three metrics. Burrow densities were reduced by 39 % in oiled sites, with impacts and incomplete recovery observed over 2010–2014. Burrow diameters were reduced from 2010 to 2011, but appeared to have recovered by 2012. Fiddler crab species composition was altered through at least 2013 and only returned to reference conditions where marsh vegetation recovered, via restoration planting in one case. Given the spatial and temporal extent of data analyzed, this synthesis provides compelling evidence that the Deepwater Horizon spill suppressed populations of fiddler crabs in oiled marshes, likely affecting other ecosystem attributes, including marsh productivity, marsh soil characteristics, and associated predators.  相似文献   

8.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

9.
Iva frutescens is a common shrub at the upland fringe of salt marshes throughout the East and Gulf Coasts of North America. Within a marsh, its location and relative size are governed largely by the degree of flooding by seawater.Iva’s wide distribution and restricted location within salt marshes may make it a useful indicator of overall conditions of the marshes. This work was designed to provide basic information on the age and growth ofI. frutescens, especially as they relate to the degree of flooding that is needed in order to investigateIva’s potential as an indicator. Cross-sections of older stems (living and standing dead) from salt marshes in Rhode Island, United States, were examined in order to age stems and estimate their growth rate from cumulative increase in woody tissue. Most stems were six yr old or less, suggesting that aboveground structures live for only a few years. Stem diameter correlated with growth rate and aboveground biomass. Elevation at the root zone was used to estimate the duration that plants were flooded, which was negatively correlated with stem diameter. The most robust plants came from sites that were flooded only up to 6–7% of the total time during the growing season. No plants were found in areas flooded more than 30% of the time.  相似文献   

10.
The ecological significance of algal and seagrass wrack subsidies has been well-documented for exposed-coast sandy beaches but is relatively unstudied in lower-energy and mixed-sediment beaches. In marine nearshore environments where beaches are fringed with riparian vegetation, the potential for reciprocal subsidies between marine and terrestrial ecosystems exists. Within the marine-terrestrial ecotone, upper intertidal “wrack zones” accumulate organic debris from algae, seagrass, and terrestrial plant sources and provide food and shelter for many organisms. Human modification also occurs within this ecotone, particularly in the form of armoring structures for bank stabilization that physically disrupt the connectivity between ecosystems. We conducted detailed wrack and log surveys in spring and fall over 3 years at 29 armored–unarmored beach pairs in Puget Sound, WA, USA. Armoring lowered the elevation of the interface between marine and terrestrial ecosystems and narrowed the width of the intertidal transition zone. Armored beaches had substantially less wrack overall and a lower proportion of terrestrial plant material, while marine riparian zones (especially trees overhanging the beach) were an important source of wrack to unarmored beaches. Armored beaches also had far fewer logs in this transition zone. Thus, they lacked biogenic habitat provided by logs and riparian wrack as well as the organic input used by wrack consumers. Results such as these that demonstrate armoring-associated loss of connectivity across the marine-terrestrial ecotone may be useful in informing conservation, restoration, and management actions.  相似文献   

11.
Tidal marsh degradation has been attributed to a number of different causes, but few studies have examined multiple potential factors at the same sites. Differentiating the diverse drivers of marsh loss is critical to prescribing successful interventions for conservation and restoration of this important habitat. We evaluated two hypotheses for vegetation loss at two marshes in Long Island Sound (LIS): (1) marsh submergence, caused by an imbalance between sea-level rise and marsh accretion, and (2) defoliation associated with herbivory by the purple marsh crab, Sesarma reticulatum. At our western LIS site, we found no evidence of herbivory: crabs were scarce, and crab-exclusion cages provided no benefit. We attribute degradation at that site to submergence, a conclusion supported by topographic and hydrologic data showing that loss of vegetation occurred only in wetter parts of the marsh. In contrast, at our central LIS site, our observations were consistent with herbivory as a driving force: There were substantial populations of Sesarma, crab-exclusion cages allowed plants to thrive, and vegetation loss took place across a variety of elevations. We also analyzed soil conditions at both sites, in order to determine the signatures of different degradation processes and assess the potential for restoration. At the submergence site, unvegetated soils exhibited high bulk density, low organic content, and low soil strength, posing significant biogeochemical challenges to re-colonization by vegetation. At the herbivory site, unvegetated soils had a characteristic “riddled-peat” appearance, resulting from expansion and erosion of Sesarma burrow networks. The high redox potential and organic content of those soils suggested that revegetation at the herbivory site would be likely if Sesarma populations could be controlled before erosion leads to elevation loss.  相似文献   

12.
Sea level rise is a major stressor on many salt marshes, and its impacts include creek widening, ponding, vegetation dieback, and drowning. Marsh vegetation changes have been associated with sea level rise across southern New England, but most of these studies pre-date the current period of rapidly accelerating sea level rise coupled with episodic events of extreme increases in water levels. Here, we combine data from two salt marsh monitoring and assessment programs in Rhode Island that were designed to assess marsh responses to sea level rise and use these data to document temporal and spatial patterns in marsh vegetation during the current period of extreme water level increases. Vegetation monitoring at two Narragansett Bay salt marshes confirms the ongoing decline of the salt meadow species Spartina patens during this period as it becomes replaced by Spartina alterniflora. Bare ground resulting from vegetation dieback was significantly related to mean high water levels and led to the rapid conversion of mixed Spartina assemblages to S. alterniflora monocultures. A broader spatial assessment of RI marshes shows that S. alterniflora dominance increases at lower elevation marshes toward the mouth of Narraganset Bay. Our data provide additional evidence that S. patens continues to decline in southern New England marshes and show that losses can accelerate during periods of extreme high water levels. Unless adaptive management actions are taken, we predict that marshes throughout RI will continue to lose salt meadow habitat and eventually resemble lower elevation marshes that are already dominated by S. alterniflora monocultures.  相似文献   

13.
A short-term study based on snap-trap capture rates of small mammals in the marsh and levee system in southwestern Louisiana was conducted in the winter-spring period. Marsh rice rats (Oryzomys palustris) dominated marsh habitats and rice rats and fulvous harvest mice (Reithrodontomys fulvescens) were co-dominants on levees. Least shrews (Cryptotis parva) and house mice (Mus musculus) were also taken. Although rice rat capture rate in marshes was twice that from levees, the difference was not significant (p=0.1428). When found on levees, rice rats preferred portions of levees adjacent to marshes and canals (p<0.0001). We found few differences in rice rat capture rates from marsh and levee habitats, although capture rates from fresh marsh and adjacent levees were select levee ridges over the marsh and canal edges (0.1≥p≥0.05). The abundance of harvest mice on levees adjacent to intermediate marshes exceeded all other levee habitats. For reasons as yet unexplained, intermediate marshes and adjacent levees had the highest small mammal abundance and species richness. Conversely, fresh marshes and their adjacent levees had the lowest abundance and variety of small mammals.  相似文献   

14.
We studied variation in bird assemblages with plant associations for three different coastal marshes from Southeastern South America (SESA) and assessed how marsh bird assemblages related to nearby upland bird assemblages. We surveyed bird species and plant structure along the tidal gradient of each locality from the low tide level to the upper habitats bordering coastal marshes. Twenty species frequently used coastal marshes, including relatively few migratory species. We found that birds occurring in SESA coastal marshes do not have distributions constrained to coastal marshes. Nonetheless, four bird assemblages were recognized in association with vegetation types and/or sites. Among the recorded coastal marsh species, the bay-capped wren-spinetail (Spartonoica maluroides) is both the most frequent and the most habitat constrained. Bird richness increases steadily along the tidal gradient associated with the increase in vegetation structure, suggesting that bird richness is directly explained by vegetation and indirectly by the physical conditions influencing vegetation structure. Results highlight the importance of SESA middle marshes as habitat for conservation of some threatened SESA grassland birds.  相似文献   

15.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

16.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

17.
Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coastal systems faced with deteriorating habitat, accelerated sea level rise, and changes in precipitation and storm patterns.  相似文献   

18.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

19.
To assess the potential for habitat isolation effects on estuarine nekton, we used two species with different dispersal abilities and life history strategies, mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides) to examine: (1) distribution trends among estuarine shallow-water flat and various intertidal salt marsh habitats and (2) the influence of salt marsh habitat size and isolation. Collections were conducted using baited minnow traps set within nonisolated interior marshes (interior), nonisolated fringing marshes (nonisolated), isolated island marshes (isolated), and shallow-water flat habitats (flat) that were adjacent to isolated and nonisolated marshes. Size range of individuals collected included juvenile and adult F. heteroclitus (20–82-mm standard length) and L. rhomboides (22–151-mm standard length). During high tide, F. heteroclitus exclusively used marsh habitats, particularly high marsh, whereas L. rhomboides used marshes and flats. F. heteroclitus abundance followed an interior > nonisolated > isolated pattern. L. rhomboides abundance patterns were less consistent but followed a nonisolated > isolated > interior pattern. A size-dependent water depth relationship was observed for both species and suggests size class partitioning of marsh and flat habitats during high tide. Minimum water depth (~31 cm) restricted L. rhomboides populations in marshes, while maximum water depth (~69 cm) restricted F. heteroclitus population use of marshes and movement between marsh habitats. Disparities in F. heteroclitus young of year contribution between isolated compared to nonisolated and interior marsh types suggests isolated marshes acted as population sinks and were dependent on adult emigrants. Resident and transient salt marsh nekton species utilize estuarine habitats in different ways and these fundamental differences can translate into how estuarine landscape might affect nekton.  相似文献   

20.
Vertical accretion of impounded marsh and adjacent natural marsh at four sites in southwestern Louisiana was estimated in 1994 by determining the depth of a stratum containing137Cs deposited in 1963. With relative marsh elevation, soil bulk density, organic matter content, and organic and mineral matter accumulation rates were used to describe soil formation. Three sites were impounded in 1956 and one site in 1951. Impounded marshes had lower marsh surface elevation than natural marshes because of hydrologic isolation from tidal sediment subsidies and substrate oxidation during forced drying. The elevation of natural marshes ranged from 12 cm to 42 cm higher than the elevation of the impounded marshes in 1963 and from 20 cm to 32 cm higher in 1994. Vertical accretion between 1963 and 1994 ranged from 9 cm to 28 cm in impounded marsh and from 15 cm to 21.5 cm in natural marsh. Only in impounded marsh that remained permanently flooded was accretion greater than in natural marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号