首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in freshwater inflow and salinity patterns may affect the nursery value of estuarine systems for penaeid shrimp, but the relationship between salinity and shrimp abundance is complex and likely confounded by other environmental variables. Laboratory experiments can provide insights into salinity selection, and we designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Our design uses gently flowing water to eliminate various physical constraints often associated with selection experiments. We conducted experiments with juvenile brown shrimp (12 trials) and white shrimp (seven trials), to examine selection for salinities along a gradient from 1 to 42. Data were analyzed using contingency tables and log-linear modeling to examine relationships with salinity and possible interactions with temperature. Both brown shrimp and white shrimp were present in all salinities examined within the experimental range. In general, brown shrimp showed a preference for salinities from 17 to 35 and demonstrated avoidance for the extreme low salinities along the gradient. Results for white shrimp were not statistically significant, and this species did not appear to avoid low salinities. There was no effect of water temperature on the observed selection patterns for brown or white shrimp. Our results suggest that although salinity preferences likely exist for these species, strong distribution trends associated with salinity gradients in estuaries are likely caused by other environmental factors.  相似文献   

2.
The saltmarsh topminnow (Fundulus jenkinsi) is federally listed as a Species of Concern due to a its rarity, impacts from human activities, and lack of information on its biology and ecology. From 2007 through 2008, we used Breder traps to fish the marsh edge on a falling tide in four regions from Louisiana through the Florida panhandle during winter, spring, and summer periods. Out of 2,108 Breder traps deployed, 661 F. jenkinsi were collected as far east as Escambia Bay, Florida, with Weeks Bay, National Estuarine Research Reserve (NERR), Alabama, yielding the highest F. jenkinsi abundance. Principal component analysis (PCA) was used to ordinate physical–chemical data into two meaningful components: a geomorphic axis (water depth, bank slope, and plant stem density) and a seasonal/spatial axis of species occurrence (water temperature, salinity, and turbidity). PCA showed a higher mean catch-per-unit-effort (CPUE) in environments comprised of low to moderate stem density (<25 stems/0.25 m−2), depth (<25 cm), bank slope (<15°), turbidity (<30 NTU), and salinity (<16) coupled with spring and early summer water temperatures (>15°C). F. jenkinsi CPUE was significantly higher in Spartina cynosuroides marsh edge compared with five other habitat types, even though it was one of the least sampled habitats. This species appears to be collected more frequently and in higher CPUE in small dendritic creeks off of main channels than suggested by our previous work in main channel edge habitat. This suggests that small creeks are important vectors for marsh access and supports the value of the dendritic nature of salt marshes to marsh residents.  相似文献   

3.
Two modeling approaches were used to explore the basis for variation in recruitment of pink shrimp,Farfantepenaeus duorarum, to the Tortugas fishing grounds. Emphasis was on development and juvenile densities on the nursery grounds. An exploratory simulation modeling exercise demonstrated large year-to-year variations in recruitment contributions to the Tortugas pink shrimp fishery may occur on some nursery grounds, and production may differ considerably among nursery grounds within the same year, simply on the basis of differences in temperature and salinity. We used a growth and survival model to simulate cumulative harvests from a July-centered cohort of early-settlementstage postlarvae from two parts of Florida Bay (western Florida Bay and northcentral Florida Bay), using historic temperature and salinity data from these areas. Very large year-to-year differences in simulated cumulative harvests were found for recruits from Whipray Basin. Year-to-year differences in simulated harvests of recruits from Johnson Key Basin were much smaller. In a complementary activity, generalized linear and additive models and intermittent, historic density records were used to develop an uninterrupted multi-year time series of monthly density estimates for juvenile pink shrimp in the Johnson Key Basin. The developed data series was based on relationships of density with environmental variables. The strongest relationship was with sea-surface temperature. Three other environmental variables (rainfall, water level at Everglades National Park Well P35, and mean wind speed) also contributed significantly to explaining variation in juvenile densities. Results of the simulation model and two of the three statistical models yielded similar interannual patterns for Johnson Key Basin. While it is not possible to say that one result validates the other, the concordance of the annual patterns from the two models is supportive of both approaches.  相似文献   

4.
In Grand Bay National Estuarine Research Reserve (Grand Bay NERR), Mississippi, we used quantitative drop sampling in three common shallow estuarine habitats—low profile oyster reef (oyster), vegetated marsh edge (VME), and nonvegetated bottom (NVB)—to address the dearth in research comparing nekton utilization of oyster relative to adjacent habitats. The three habitats were sampled at two distinct marsh complexes within Grand Bay NERR. We collected a total of 633 individual fishes representing 41 taxa in 22 families. The most diverse fish family was Gobiidae (seven species) followed by Blennidae and Poeciliidae (three species each). We collected a total of 2,734 invertebrates representing 24 taxa in 11 families. The most diverse invertebrate family was Xanthidae (six species) followed by Palaemonidae (five species). We used ordination techniques to examine variation in species relative abundance among habitats, seasons, and sampling areas, and to identify environmental gradients correlated with species relative abundances. Our resulted indicated that oyster provided a similarly complex and important function as the adjacent VME. We documented three basic trends related to the importance of oyster and VME habitats: 1) Oyster and VME provide habitat for significantly more species relative to NVB, 2) Oyster and VME provide habitat for rare species, and 3) Several species collected across multiple habitats occurred at higher abundances in oyster or VME habitat. We also found that salinity, temperature, and depth were associated with seasonal and spatial shifts in nekton communities. Lastly, we found that the relative location of the two marsh complexes we studied within the context of the whole estuary may also explain some of the temporal and spatial differences in communities. We conclude that oyster habitat supported a temporally diverse and spatially distinct nekton community and deserves further attention in research and estuarine conservation efforts.  相似文献   

5.
103 surface sediment samples in 71 water bodies,such as lakes with different salinity,swamps,shallow puddles and rivers on the Qinghai-Tibetan Plateau(QTP),were collected to study the ecological distribution of living ostracods and their environmental implications. Total of 12 genus and 45 species living ostracods are identified. According to the frequencies and abundance of ostracods occurrence,Limnocythere dubiosa,Limnocytherellina kunlunensis,Ilyocypris bradyi,Candona candida,Eucypris rischtanica and Leucocythere dilatata are the common species on the QTP,with occurrence frequency of more than 8 and abundance of more than 570 in the 71 water bodies. Among them,L. dubiosa,occurring in 28 water bodies with 2177 shells,is the most widely distributed ostracod in this research. Canonical Correspondence Analysis(CCA) indicates high correlation between species and environmental variables,suggesting that the occurrence of species is strongly related to the changes in ecological conditions of habitats. Among eight environmental factors,salinity and p H value are the most affective variables that influence the species occurrence. L. kunlunensis is positively correlated with salinity while E. rischtanica is negatively correlated with salinity. C. candida has a positive correlation with salinity,as does I. bradyi although there is not such a strong correlation. L. dubiosa displays a positive correlation with p H value. Consequently,we discuss the environmental implications of the common living ostracods on the QTP based on the CCA as well as the distribution of ostracod species in different salinity and p H values water. L. dubiosa,L. kunlunensis and E. rischtanica are euryhaline species,among which,L. dubiosa is the most adaptable species on the QTP with large occurrence in sundry salinity water and the most widely adaptive range for p H values. L. kunlunensis prefers to saline water while E. rischtanica prefers to fresh water. Both L. kunlunensis and E. rischtanica can live in water from faintly acid to alkaline,in contrast,L. dubiosa only appears in neutral and alkaline water bodies. I. bradyi only occurs in fresh water and oligohaline water with a large p H tolerance range tolerance range from weakly acidic water to alkaline water weakly acidic water to alkaline water. C. Candida lives in freshwater,with p H value above eight. The six common species reach maximum abundance in alkaline water(p H 8-10) except for Ilyocypris bradyi.  相似文献   

6.
The biochemical composition of red seaweeds, Catenella repens was investigated in this present study along with subsequent analysis of relevant physico-chemical variables. In this study, the relationship between the nutritive components of this species and the ambient environmental parameters was established. Protein content varied from 2.78 ± 0.30% of dry weight (stn.3) to 16.03 ± 0.96% of dry weight (stn.1) with highest values during monsoon. The protein levels were positively correlated with dissolved nitrate content and negatively correlated with water temperature (except stn.3) and salinity. Carbohydrate content of this species varied significantly (p < 0.05) during pre-monsoon between stations and the values showed positive relationship with salinity and surface water temperature. In contrast to carbohydrate, lipid concentration was lowest in values and varied very slightly between seasons and stations. Astaxanthin content of the seaweed species was greater in pre-monsoon than monsoon and post-monsoon in all the selected stations. Compared with the three seasons, samples of red seaweed collected in pre-monsoon has high carbohydrate-astaxanthin in contrast to protein-lipid which showed high values during monsoon. Statistical analysis computed among the environmental and biochemical parameters suggests the potential role played by the abiotic parameters on biosynthetic pathways of seaweed. This paper also highlights the influence of the nutritional quality of water that can be used for mass cultivation of Catenella repens.  相似文献   

7.
Structure and temporal variability in nekton communities were examined for four small brackish creeks along a major tributary (Adams Creek) of the Neuse River estuary, North Carolina during May–September 1994. An inverse salinity gradient was observed along Adams Creek with highest values in the most upstream creek due to a manmade channel connecting the creek to the Newport River estuary. The nekton communities of the four tributaries were similar with some differences in relative abundance of individual species and timing of recruitment and migrations. Bay anchovies (67%), spot (19%), and brown shrimp (6%) were the most abundant species, with the top ten species accounting for 98% of the total catch. The transport of high salinity water (and presumably nekton larvae) into the headwaters of Adams Creek via the canal appeared to have a strong influence on the nekton community; the nekton community present in the Adams Creek system resembled communities in mesohaline waters closer to the outer banks rather than those in an adjacent creek along the Neuse River estuary (South River estuary). Cluster analysis indicated nekton in the creeks could be grouped into early and late season assemblages. Canonical correspondence analysis suggested that neither the creeks nor the dominant species were strongly related to any measured environmental variables indicating habitat suitability was similar regardless of the differences in watershed activities among the four creeks.  相似文献   

8.
Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance (1984–2006). Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAV abundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high nutrient concentrations, within Chesapeake Bay. The nutrient reductions noted in some tributaries, which were highly correlated to increases in SAV abundance, suggest management activities have already contributed to SAV increases in some areas, but the strong negative correlation throughout the Chesapeake Bay between nitrogen and SAV abundance also suggests that further nutrient reductions will be necessary for SAV to attain or exceed restoration targets throughout the bay.  相似文献   

9.
To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012–2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1–22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.  相似文献   

10.
Spanning 20?years (1979?C2007), this study is the longest time series pertaining to the resident shrimp species Palaemon longirostris in a European estuary. Data from monthly faunal surveys undertaken across the middle part of the Gironde estuary from April 1979 along with data from a statistical analysis of the commercial catches throughout the entire estuary and river were considered in order to explore their inter and intra-annual variability and long-term trends. Long-term densities series as well as environmental series (salinity, discharge, temperature and NAO) were decomposed and the effects of environmental variables were also examined using statistical models (GAMs). This revealed important spatio-temporal variability and a significant overall decrease in abundance of this species in the Gironde estuary since the beginning of the 1980s. This long-term decrease in abundance corresponded significantly to long-term decreases in both discharge and the NAO index, as well a long-term increase in temperature and salinity in the middle part of the estuary. However, models showed that environmental factors explained only a small part of the variability. The upstream shift of the population highlighted in this study, probably due to the intrusion of marine waters into the middle section of the estuary, may also have contributed to its decrease in abundance. Inter-annual variability of densities was also significantly linked with inter-annual fecundity fluctuations, and a significant decrease in both mean female size and fecundity was shown for preserved samples from 1992. Moreover, the breeding period has been temporally stretched out and began earlier in more recent years, potentially due to the increase in spring temperature.  相似文献   

11.
Blue crab, Callinectes sapidus, commercial landings in the USA have been declining at an alarming rate. In South Carolina, these declines are significantly correlated with years of decreased rainfall and elevated salt marsh salinity. Previous studies suggest that higher salinity increases the risk of infection by Hematodinium sp., a dinoflagellate parasite of blue crabs, C. sapidus. A 4-year survey (June 2008 to March 2012) of blue crabs in the ACE Basin National Estuarine Research Reserve documented (1) the temporal and spatial patterns of Hematodinium sp. infection in relation to salinity, (2) some environmental correlates of disease prevalence, and (3) the characteristics of infected blue crabs. Sampling was conducted four times a year in March, June, September, and December in the South Edisto, Ashepoo, and Combahee rivers beginning in June 2008. Crab hemolymph samples were collected and preserved and DNA was successfully amplified for 2,303 individuals. Hematodinium sp. infection was evaluated by PCR amplification of its 18S rRNA gene and adjacent regions. Prevalence was highest in December 2008 in the Combahee River at sites closest to St. Helena Sound. The spatial and temporal pattern of Hematodinium sp. infection was correlated with several environmental parameters. Infected crabs exhibited differences in carapace shape and body condition compared to uninfected crabs. Overall, these results suggest that blue crabs in regions of higher salinity are at greater risk of infection by Hematodinium sp. and infected individuals exhibit sub-lethal effects of the disease.  相似文献   

12.
Fish abundance and environmental data collected over ten years (1980–1989) from the middle Thames estuary, England, were analyzed to detect temporal trends in fish populations and relationship with environmental parameters, and to assess water quality. Fish were collected from the cooling water intake screens of West Thurrock power station, situated 35.5 km below London Bridge, in the mid-estuary. Marine species abundance were highly seasonal, with peaks in December–March for herring (Clupea harengus), sprat (Sprattus sprattus), 3-spined-stickleback (Gasterosteus aculeatus), and poor cod (Trisopterus minutus); July–August for flounder (Platichthys flesus); and September–December for sand goby (Pomatoschistus minutus), whiting (Merlangius merlangus), bass (Dicentrarchus labrax), plaice (Pleuronectes platessa), and dab (Limanda limanda). Bimodal seasonal patterns of peaks or unclear seasonality in abundance characterized marine estuarine-dependent sole (Solea solea), Nilsson's pipefish (Syngnathus rostelattus) (April/May and September/October), and pouting (Trisopterus luscus) (May and November/December); the estuarine smelt (Osmerus eperlanus) (October and January) and the catadromous eel (Anguilla anguilla) (June and October). There was substantial variation in the abundance of common species over the period of ten years, with herring, sand goby, flounder, and plaice showing a stable abundance in 1980–1984, increasing sharply in 1985–1986, and then decreasing successively through the remainder of the decade (1987–1989). The first half of the decade was a period of higher abundance for less tolerant species such as smelt, sprat, and poor cod, while the second half showed higher abundances of species tolerant to harsh environmental conditions such as sand goby, flounder, eel, and plaice. A general pattern of stable fish populations with a slight trend of deterioration was found to emerge over the years, related to the number of species and quantities of common species. Multivariate techniques of principal component and canonical correspondence ordinations were used for assessing relationships between fish populations abundance and environmental variables. The most significant environmental variables correlated with fish species were temperature and dissolved oxygen. High abundances of flounder were associated with high temperature, while high abundance of poor cod, sprat, herring, and 3-spined-stickleback were associated with high dissolved oxygen, flow, ammonical nitrogen, and low temperature. Plaice, whiting, sand goby, bass, and dab were preferentially found in high salinity and suspended solids, while smelt and sole were likely to prefer average values or showed no clear preferences.  相似文献   

13.
We examined patterns of habitat use by fishes and decapod crustaceans in a seemingly pristine tidal stream system that drains into southeastern coastal Louisiana, northern Gulf of Mexico. The study area centered on a relatively unaltered mesohaline saltmarsh nested within more heavily degraded conditions. Monthly sampling (February–November 2004) stratified along a stream-order gradient examined changes in nekton abundance, species richness, and community structure. Analyses were based on a microhabitat approach used to characterize nekton responses to spatial gradients of water depth, temperature, dissolved oxygen, salinity, turbidity, bottom slope, stream width, and distance to mouth. Thirty taxa were identified from 3,757 individuals collected in 82 seine samples. Seven fishes and three decapods constituted >95% of the community structure. Analyses detected the effects of stream order on fish community structure and associated environmental variables. Spatial differences of environmental variables across stream order were attributed to the geomorphology and hydrology of the study area. A factor analysis resolved eight environmental variables into four orthogonal axes that explained 80% of environmental variation. We interpreted factor 1 as a stream-order axis, factor 2 as a morphological axis, factor 3 as a seasonal axis, and factor 4 as a salinity axis. Differences in use of four-dimensional factor space by dominant species reflected habitat selection and species residency status.  相似文献   

14.
Examination of small-scale spatial variation in essential to understanding the relationships between environmental factors and benthic community structure in estuaries. A sampling experiment was performed in October 1993 to measure infauna association with sediment composition and salinity gradients in Nueces Bay, Texas, USA. The bay was partitioned into four salinity zones and three sediment types. Higher densities of macrofaua, were found in sediments with greater sand content and in areas with higher salinity. High diversity was also associated with high homogeneous salinity (31–33‰) and greater sand content. Macrofauna biomass and diversity were positively correlated with bottom salinity, porewater salinity, and bottom dissolved inorganic nitrogen (DIN). Furthermore, species dominance shifted along the estuarine gradient.Streblospio benedicti dominated at lower salinity, but,Mediomatsus ambiseta andMulinia lateralis were the dominant species at higher salinity. Statistical analyses revealed significant correlations for sediment characteristics (i.e., increased fine sediments, water content, and total organic carbon) with decreased total abundance and diversity. Increased salinity and DIN were correlated with increased total biomass, diversity, and macrofauma community structure. These physico-chemical variables are regulated by freshwater inflow, so inflow is an important factor influencing macrofauna community structure by indirectly influencing the physico-chemical environment.  相似文献   

15.
Blue crabs (Callinectes sapidus) are an important species in coastal or lagoonal estuaries where adult population characteristics may differ as compared to drowned-river estuaries. Barnegat Bay, in southern New Jersey, is composed of two large embayments: one without and one with a salinity gradient. We tested the influence of physical characteristics on the abundance, sex ratio, and size of adult blue crabs and examined variation in measures of reproductive potential (e.g., sperm stores) in both sexes in Barnegat Bay from June to September, 2008–2009. Population structure was distinct between the embayments due to sex-specific responses to salinity: male abundance was negatively correlated with salinity whereas adult females were more abundant in high salinity because of proximity to Barnegat Inlet. This produced high sex ratios in low salinity areas and low sex ratios in high salinity areas. Summer was a growing season for adult males while in late summer-early fall, juvenile males recruited to the adult size class. The spawning season lasted from May to August and ovigerous females were concentrated near the inlets. Information on female sperm stores and ovarian development identified two cohorts of adult females: females that will spawn in the current summer and females that will not spawn until the following summer. Thus, not all adult females near the spawning grounds were members of the current spawning stock. This suggests that annual estimates of spawning stock size which overlook the proximity of females to spawning are overestimating the current spawning stock in Barnegat Bay and other estuaries.  相似文献   

16.
We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblage and Gulf menhaden (Brevoortia patromus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance ofM. undulatus and an increase in the proportion ofA. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats.  相似文献   

17.
In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.  相似文献   

18.
The relative abundance of diatom species in different habitats can be used as a tool to infer prior environmental conditions and evaluate management decisions that influence habitat quality. Diatom distribution patterns were examined to characterize relationships between assemblage composition and environmental gradients in a subtropical estuarine watershed. We identified environmental correlates of diatom distribution patterns across the Charlotte Harbor, Florida, watershed; evaluated differences among three major river drainages; and determined how accurately local environmental conditions can be predicted using inference models based on diatom assemblages. Sampling locations ranged from freshwater to marine (0.1–37.2 ppt salinity) and spanned broad nutrient concentration gradients. Salinity was the predominant driver of difference among diatom assemblages across the watershed, but other environmental variables had stronger correlations with assemblages within the subregions of the three rivers and harbor. Eighteen indicator taxa were significantly affiliated with subregions. Relationships between diatom taxon distributions and salinity, distance from the harbor, total phosphorus (TP), and total nitrogen (TN) were evaluated to determine the utility of diatom assemblages to predict environmental values using a weighted averaging-regression approach. Diatom-based inferences of these variables were strong (salinity R 2?=?0.96; distance R 2?=?0.93; TN R 2?=?0.83; TP R 2?=?0.83). Diatom assemblages provide reliable estimates of environmental parameters on different spatial scales across the watershed. Because many coastal diatom taxa are ubiquitous, the diatom training sets provided here should enable diatom-based environmental reconstructions in subtropical estuaries that are being rapidly altered by land and water use changes and sea level rise.  相似文献   

19.
Predation is likely the primary source of mortality for juvenile penaeid shrimp and, therefore, a key factor driving their population dynamics. We sampled juvenile penaeids and their potential predators in a salt marsh from July to August 2012 to examine the impact of these predators and possible size-selective predation on the shrimp population. We quantified predator impact using the frequency of occurrence (FO) index and a relative predation index (RPI) that accounts for predator abundance and the number of shrimp consumed per individual predator. Size selectivity was assessed by comparing the size distribution of shrimp in the study area to the size distribution of shrimp removed from predator stomachs. Two penaeid species, white shrimp Litopenaeus setiferus and brown shrimp Farfantepenaeus aztecus, were collected, and most (86%) were juvenile white shrimp ≤?12 mm carapace length. Spotted seatrout Cynoscion nebulosus, which consumed relatively large shrimp, was the most important predator based on the FO index. Bay whiff Citharichthys spilopterus, which ate the smallest shrimp, was the most important predator based on the RPI. The size distribution of shrimp removed from predator stomachs differed from those collected in the study area; the smallest shrimp were disproportionally more abundant in predator stomachs. Using the RPI, we identified some potentially important predators (e.g., bay whiff) that may impact shrimp populations by consuming the smallest shrimp in estuarine nurseries. Our approach could be useful for examining predator impacts on other populations of juvenile penaeids and more generally for any prey consumed by fish predators.  相似文献   

20.
We examined relative abundance of juvenile weakfish,Cynoscion regalis, collected during 1986 and 1987 and tested for spatial differences in growth and survival within Delaware Bay. Juvenile weakfish recruit to all areas of Delaware Bay, and two cohorts were present during each year of the study. Although catch per unit effort (CPUE) varied among areas within the bay, there was a general trend of higher CPUE at lower salinities; abundance quickly declined near the end of September in all areas of the bay. Estimated growth rates from otolith increment analysis of juvenile weakfish ranged from 0.69 mm d−1 to 0.97 mm d−1. Spatial and temporal patterns in recent growth rate followed a general pattern: highest in the middle bay, lowest in the upper bay, and intermediate in the lower bay. Mortality rates were usually lowest in the low salinity region of the middle and upper bay during both years. There was no difference in mortality between cohorts in the middle bay, while in the upper bay the later-spawned fish had lower mortality and in the lower bay the early-spawned fish had lower mortality. Analysis of spatial and temporal patterns in growth and mortality suggests that there is a seasonal trade-off between habitat usage and resource availability for juvenile weakfish. The function of oligohaline and mesohaline waters as optimal nursery areas (in terms of growth and survival) changes due to the seasonally dynamic physicochemical characteristics in Delaware Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号