首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
裂隙岩体流-热耦合传热的三维数值模拟分析   总被引:1,自引:0,他引:1  
通过对潘西煤矿水文地质条件的分析,基于裂隙岩体的流-热耦合数学模型,描述了裂隙岩体渗流场分布和水流及岩体的温度场分布,并结合边界条件及计算参数对裂隙岩体的流-热耦合传热进行了数值模拟和分析。数值模拟结果表明,岩体内裂隙水流所引发的热量迁移,对裂隙岩体的温度场分布有重要影响。断裂带及地下水流的存在改变了岩体的原有温度场分布。在渗流初期,温度梯度矢量沿渗流方向向两侧岩体方向流动,由于两侧岩体的渗透性系数低于断裂带处的渗透性系数,右侧等温线及温度梯度矢量方向逐渐向渗流方向移动,改变了两侧岩体的温度场分布。通过对断裂带内裂隙水流渗透性系数的折减,分析渗透性系数发生变化时对岩体温度场分布的影响,渗透性系数越大,伴随的热量迁移增大,对岩体的温度场分布的影响也越大。  相似文献   

2.
为了研究高温巷道下围岩-隔热支护体系温度场的分布情况,基于围岩散热、能量守恒原理和异步长有限差分计算方法,建立了围岩-支护体系一维非稳态下的有限差分方程,编制相应解算程序,探讨了通风时间、围岩导温系数、温差、隔热层厚度和导热系数对围岩调热圈温度场的影响规律。研究结果表明:隔热层能延缓围岩散热和减少巷道风流对围岩的扰动,加快巷道降温;调热圈半径随通风时间增加、围岩导温系数增加、隔热层导热系数增加和厚度减少而增加。围岩温度梯度随通风时间增加而降低,随风流和原岩温差增大而增大;研究提高了对高温巷道调热圈特性及隔热结构的认知,对合理安排隔热支护有一定指导作用。   相似文献   

3.
为研究深部回采巷道围岩大变形破坏规律,在地质力学评估及矿压显现特征实测的基础上,采用真三轴相似模拟方法,模拟了不同加载梯度下巷道围岩应变特征。结果显示,在浅埋静水压力条件下,巷道围岩呈现“浅部拉应变、深部零应变”的特征;深埋静水压力及初掘采动应力下巷道围岩出现“径向应变拉压交替分布”现象;当采动应力集中系数大于2时,深埋巷道围岩应变进入非线性大应变状态。采用FLAC3D的应变软化模型与摩尔-库仑模型,对比研究了深部回采巷道围岩位移、塑性区分布规律。结果表明,应变软化条件下,巷道围岩产生拉、压分区破坏且软化后的围岩位移与实测结果更吻合。综合研究结果,揭示了深部回采巷道围岩拉、压分区的产生机制,初步提出了注浆、喷层等措施,防止过度应变软化引起深部回采巷道围岩大变形,为类似巷道稳定性控制提供了一定的参考。  相似文献   

4.
高速冲击载荷作用深埋巷道变形非线性数值模拟   总被引:1,自引:0,他引:1  
深埋巷道冲击破坏问题一直是研究的难点,为更好的研究深部岩体动力破坏规律,揭示深埋巷道冲击破坏机制,采用非线性动力分析方法,利用FLAC3D计算软件再现深埋巷道冲击破坏过程,对高速冲击载荷作用下煤岩巷道变形规律进行非线性分析。计算结果表明,在高速冲击载荷作用下巷道顶底板和两帮围岩处有应力集中,均出现较大变形,且向巷道内部方向呈现出近似V型分布;各监测点作用力和位移结果也说明在巷道顶、底板和两帮围岩处均发生明显的冲击,且加载初期冲击较弱,在t=0.5s时冲击作用明显增强,计算结果可为深埋巷道加固措施提供有利参考。  相似文献   

5.
辽宁大隆矿区矿井巷道空气温度的数值模拟与分析   总被引:2,自引:0,他引:2  
为解决深部开采带来的巷道内温度过高而没有对热量加以利用的问题,采用传热学、计算流体力学理论,对巷道围岩—空气换热系统进行了三维数值计算,研究了在渗流和无渗流条件下巷道内部温度场随巷道空气入口雷诺数的变化规律。计算结果表明:在巷道长度方向0~50m范围内温升不明显,超过50m后温度增加明显,并且随着长度增加温度相应增加;渗流情况下,巷道空气出口平均温度高于无渗流情况下巷道空气出口平均温度;渗流情况下,雷诺数在1.3×105~3.5×105、11.33×105~3.5×105间平均总传热系数大于无渗流情况下平均总传热系数。控制巷道空气入口雷诺数是解决巷道内温度过高和对热量加以利用的关键。以上结论为矿井热害的综合治理、基于巷道风热量利用的空气源热泵系统的优化设计提供了重要依据。  相似文献   

6.
为研究双巷布置工作面留巷受重复采动影响围岩的变形破坏规律及稳定控制问题,综合运用数值模拟、理论分析和现场观测等方法,研究双巷间距对重复采动下留巷围岩塑性区空间分布特征及偏应力的影响规律,揭示二次采动对留巷塑性区的诱导扩展机制,提出围岩塑性区二次扩展抑制方法。结果表明:重复采动巷道围岩塑性区在巷道轴向上均可划分为6个区域,整体表现为双巷间距越大,则塑性区破坏深度越小的特征,且其形态由非对称分布向对称分布状态转化,双巷距离增加造成的应力旋转程度和偏应力峰值低是主要原因。一次采动滞后影响稳定区维护距离及周期最长,且为二次采动塑性区叠加扩展的基础,是重复采动巷道围岩稳定的关键控制区域。据此提出通过调整巷道空间位置,达到改善应力环境、调整巷道围岩破坏状态的目的,并建立了分区补强支护相结合的调控方法和控制技术体系。现场实测结果表明,该技术体系能够达到巷道安全稳定目的,效果良好。  相似文献   

7.
锦屏二级水电站深埋隧洞外水压力研究   总被引:11,自引:1,他引:11  
对于富水区深埋隧洞来说,外水压力是一项重要荷载,是隧洞设计及施工中需重点研究的问题,国内外已有众多学者对此展开研究,但对高外水作用下的隧洞围岩稳定及支护结构设计依然是个难题。本文采用考虑降雨入渗渗流场分析的有限单元方法,对锦屏二级水电站深埋引水隧洞的外水压力进行了研究,提出富水区深埋隧洞渗流控制"以堵为主,堵排结合"。通过对围岩高压固结灌浆,封堵地下水,利用灌浆圈围岩和隧洞衬砌支护联合承载。  相似文献   

8.
岩体冻融过程中水热耦合非线性分析   总被引:1,自引:0,他引:1  
针对工程地质和岩土工程中所涉及到的冻害问题,在质能平衡的基础上,充分考虑冻结岩体的热传导、水和岩体存在的热交换以及水热梯度共同作用下水分的迁移与转化,建立了水热耦合的非线性控制方程;对寒区大阪山隧道围岩的温度场和水分场进行数值模拟,并分析其水热耦合迁移规律.模拟结果表明:隧道围岩水分受冻结抽吸力和温度梯度的作用发生迁移,在隧道边墙处渗流速度最大;在考虑水分场时,隧道围岩的冻结圈将变薄,而且随着水分场中渗流系数的增大将更加变薄,水分场在很大程度上影响温度场的分布;为了减少冻害对寒区工程的破坏,应采取良好的保温措施.模拟结果与现有研究成果和工程经验类似.  相似文献   

9.
引水隧洞工程中热应力对围岩表层稳定性的影响分析   总被引:1,自引:0,他引:1  
岩石中的热应力作用,是岩石热学问题中的一个重要研究内容。热应力由温度变化造成,温度的周期性变化引起热应力的周期性变化,热应力周期性作用导致岩石的疲劳破坏。以雅砻江锦屏水电站深埋引水隧洞为例,分析隧洞围岩温度场的分布特征,根据热应力交变作用特点,提出岩石的疲劳破坏判据,并利用这个判据分析热应力作用下隧洞围岩表层的破坏特点。  相似文献   

10.
引水隧洞工程中热应力中对围岩表层稳定性的影响分析   总被引:1,自引:0,他引:1  
岩石中的热应力作用,是岩石热学问题中的一个重要研究的内容。热应力由温度变化造成,温度的周期性变化引起热应力的周期性变化,热应力周期性作用导致岩石的疲劳破坏。以雅砻江锦屏水电站深埋引水隧洞为例,分析隧洞围岩温度场的分布特征,根据热应力交变作用特点,提出岩石的疲劳破坏判据,并利用这个判据分析热应力作用下隧洞围岩表层的破坏特点。  相似文献   

11.
裂隙岩体渗流耦合传热分析   总被引:2,自引:0,他引:2  
以地下裂隙岩体在裂隙水—孔隙水和温度场之间耦合作用为研究对象,对热和流体流动控制方程采用有限容积数值方法进行离散求解,设置了六种裂隙水—孔隙水流速方案,给出了部分无量纲温度场,并分析了传热与流动原因。分析结果表明:岩体内裂隙水—孔隙水引发的热质迁移对裂隙岩体的温度场分布有重要影响;当裂隙岩体内发生地下裂隙水—孔隙水渗流、及热量的转移时,会产生渗流场、温度场之间的耦合作用;裂隙内水流渗透速度是影响岩体温度的主要因素,孔隙内水流渗透速度是影响岩体温度的次要因素,温差主要发生在裂隙水边界层处。  相似文献   

12.
以地下水位线以下的石楼隧道典型三趾马红土围岩段为例,通过现场监测对三趾马红土围岩的体积含水量、孔隙水压力、围岩应力(土压力)、拱顶沉降与水平收敛进行了分析。在此基础上,通过原位大剪试验获得了可靠的围岩抗剪强度参数,并建立了隧道三维有限元数值模型,分别对考虑水-力耦合效应、不考虑水-力耦合效应的三趾马红土围岩变形规律进行了探讨,分析了孔隙水压力随着隧道开挖的变化和三趾马红土围岩位移场、应力场受水-力耦合效应的影响程度,并提出了围岩破坏变形机制。结果表明:(1)实测拱顶下沉大于围岩水平变形,围岩应力可分为增长期( < 20d)、调整期(20~60d)、稳定期(>60d)3个阶段,且整体应力水平较高,下台阶含水量大于上台阶,孔隙水压力经历了由负变正的过程。(2)现场剪切试验所测围岩的黏聚力为64.0kPa,内摩擦角为27.7°。(3)数值分析表明,隧道开挖后孔隙水压力场变化十分明显,这是由地下水流速场的改变引起的,水力坡降在衬砌面附近最为明显,渗透动水压力导致土体产生一定的渗透变形;考虑水-力耦合后围岩剪应力、最大剪应变、拱顶沉降、水平收敛、底板隆起均较大。(4)受开挖及支护的影响,地下水产生渗流并依次经过拱顶、边墙,最终汇集于隧底;受开挖、地下水渗流的影响,围岩节理裂隙进一步扩张,成为地下水良好的运移通道;围岩的有效应力随着孔隙水压力的减小而增大,围岩的力学强度在土体趋于饱和状态时骤降,反过来,高有效应力、低围岩强度以及贯通性节理裂隙三者共同改变着地下水渗流场的状态。(5)为保障围岩整体稳定性,建议及时排出隧道底部积水并施做仰拱。  相似文献   

13.
崔昭 《地下水》2019,(3):20-21,32
为研究地下水"热"源对于渗流场的影响,选取某水库水源地辐射取水区及部分扩张区为研究范围,使用地下水通用软件FEFLOW对单一地下水热源作用下的Y型河道的渗流场和温度场进行研究,得出地下水热源对渗流场和温度场的影响规律,结果显示:地下水位受水源的影响,在不同位置水位不同,含水层内随着到水源点距离的增加,水位逐渐降低,到达某个位置时会保持稳定不变;靠近地表的地下水温会随着到水源点距离的增加逐渐降低,在垂向上,含水层内地下水温随着高程的降低逐渐降低,而在库水区,受库水的影响垂向水温变化规律则刚好相反,研究结论可为实际工程提供理论指导。  相似文献   

14.
侯会明  胡大伟  周辉  卢景景  吕涛  张帆 《岩土力学》2020,41(3):1056-1064
高放废物地质处置库处于温度?渗流?应力(THM)多场耦合环境中,对高放废物处置库进行安全评估时,需进行多场耦合分析。然而,高放废物处置库开挖引起硐壁附近围岩应力重分布,产生损伤,导致围岩热学参数(T)、渗流参数(H)和力学参数(M)发生变化,且在空间上分布不均匀,这将会对运营期处置库THM耦合演化过程产生显著影响。通过分析高放废物处置库温度?渗流?应力三场的耦合原理和处置库围岩损伤的分布和演化规律,定义了损伤变量和损伤演化准则,并将损伤变量与热学参数、渗流参数、力学参数以及多场耦合参数(Biot系数、Biot模量和温度排水系数)建立联系,将围岩损伤与温度?渗流?应力建立联系,形成了一个弹塑性损伤温度?渗流?应力多场耦合数值模型,然后利用建立的模型对瑞士Mont Terri高放废物地质处置库围岩加热试验进行模拟,对比了模拟值和试验值,比较了考虑开挖损伤和不考虑开挖损伤对高放废物地质处置库温度?渗流?应力的影响,并分析了在多场耦合作用下开挖损伤的演化规律。  相似文献   

15.
许渊  李亮  邹金锋  袁臻 《岩土力学》2015,36(10):2837-2846
为了研究渗透水压力和轴向应力共同作用时隧道围岩的应力和位移变化趋势,将圆形隧道简化为轴对称模型,假定渗透场以渗透体积力作用在原应力场,以围岩开挖断面为假定平面,引入垂直于该平面的轴向应力。基于广义Hoek-Brown强度准则和非关联流动法则,推导出考虑轴向应力和渗透场共同作用时弹-脆-塑性围岩的应力和位移非线性解,采用数值算例分析了轴向应力和渗透力共同作用时隧道围岩塑性区应力场和位移场的分布规律。计算结果表明:与无渗透水压力作用下的模型相比,渗透力作用使得围岩塑性区各点位移增大,并且内外水头差越大,位移增大越明显。当轴向应力为中主应力时,围岩塑性区半径和塑性区各点应力增大,轴向应力为大主应力和小主应力时,围岩塑性区半径和塑性区应力变化较小。因此,渗透力的存在不利于隧道围岩的稳定性,并且轴向应力的大小对于富水地区隧道围岩的应力和位移分布具有较大影响。在施工设计时考虑渗透力以及轴向应力的共同影响对于保证隧道围岩稳定性具有重要意义。  相似文献   

16.
寒区软岩隧道的水热耦合数值模拟与分析   总被引:2,自引:0,他引:2  
杨更社  周春华  田应国 《岩土力学》2006,27(8):1258-1262
介绍了寒区软岩隧道水热耦合的一般数值解法,应用Femlab软件对寒区大阪山隧道出口段kl06+025处围岩的温度场和水分场进行数值模拟,分析了软岩隧道中水热耦合迁移的规律。在考虑水分场时,隧道围岩的冻结圈将变薄,而且随着水分场中渗流系数的增大将更加变薄,水分场在很大程度上影响温度场的分布。模拟的结果表明:处于拱顶处的冻深最大,其次是仰拱处,最薄处是边墙,与工程经验类似。通过实例模拟分析说明,应用该软件可以在已有工程数据的前提下对工程设计提供一定的参考。  相似文献   

17.
This paper studies the joint effect of seepage force and axial stress on the stress and displacement of circular tunnel. The circular tunnel is simplified as an axisymmetric model and the seepage field is simplified as volumetric force in the stress field. The excavation cross-section of surrounding rock is assumed as a plane as well, and an axial stress perpendicular to the plane is further introduced. Nonlinear solutions for the stress and displacement of circular tunnel are deduced considering the joint effect of axial stress and seepage force, based on the generalized Hoek-Brown failure criterion and the non-associated flow rule in elastic-brittle-plastic rock mass. Numerical simulations are also employed to analyze the distribution of stress field and displacement field in plastic zone of a circular tunnel under the joint effect of axial stress and seepage force. The calculated results show that the displacement in plastic zone increases significantly with the gradient increment of the seepage pressure, compared with the situation without seepage force. The radius and stress of surrounding rock in plastic zone increase when axial stress is the intermediate principal stress, while the radius and stress have less change when axial stress is the major or minor principal stress. It can be concluded that the seepage force has negative effects on the stability of circular tunnel, and the axial stress significantly influences the stress and displacement of the circular tunnel, especially in water-rich areas. Therefore, it is necessary to consider the joint effects of axial stress and seepage force to ensure the stability of circular tunnel in water-rich area.  相似文献   

18.
为能精确计算地铁隧道围岩内的传热量,模拟了地铁隧道围岩内的热传导,研究了地铁围岩内的温度分布规律,并通过试验结果对土体热导率进行反算。分析表明:同一时刻,距隧道壁面不同距离处的温度以指数形式进行变化,距离越远,温度越小;时间越久,隧道内流体的温度影响范围越大。除隧道外壁面外,距隧道壁某距离处的温度,随时间的增长而逐渐增长,距隧道壁较近处土体温度较高,温度增长速率随时间的增长而逐渐减小;距隧道壁面距离较远处温度较低,其增长速率随时间的增长而逐渐增大。传热时间超过某一值后,围岩内温度增长率逐渐平稳趋于一定值。根据模型试验结果能较精确得到土样的热导率数值。  相似文献   

19.
何维维  盛煜 《冰川冻土》2013,35(1):186-192
在多年冻土区进行煤矿地下开采, 通风作用改变了井筒围岩的热平衡条件, 从而引起了多年冻土上限及其井筒周围冻土季节融化层的变化, 有可能影响到井筒支护结构的稳定性. 因此, 研究在矿井通风作用下, 多年冻土温度场分布及随季节的变化趋势是有意义的. 基于ANSYS有限元分析软件, 针对多年冻土区某煤矿的赋存条件、 试验采场位置以及通风作用对冻土的影响范围, 建立了二维数值计算模型, 利用焓式有限元方法对多年冻土井筒围岩的温度特性进行了数值模拟, 分析了矿井通风对多年冻土井筒围岩的热影响程度, 其计算方法和结果为下一步多年冻土煤矿地下开采井筒支护设计提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号